用粒子群优化高斯过程回归预测python代码
时间: 2023-09-03 13:09:23 浏览: 174
基于粒子群算法(PSO)优化高斯过程回归(PSO-GPR)的数据回归预测(Matlab完整源码和数据)
5星 · 资源好评率100%
以下是一个用粒子群优化高斯过程回归进行预测的Python代码,仅供参考:
```python
import numpy as np
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C
from pyswarm import pso
# 定义高斯过程回归模型
ker = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2))
gp = GaussianProcessRegressor(kernel=ker, n_restarts_optimizer=9, alpha=0.1)
# 粒子群优化
def optimize(x, y):
def fun(params):
gp.set_params(alpha=params[0], kernel__k1__constant_value=params[1], kernel__k2__length_scale=params[2])
return -gp.log_marginal_likelihood([params[0], params[1], params[2]], y)
lb = [1e-6, 1e-6, 1e-6]
ub = [1e6, 50, 50]
xopt, fopt = pso(fun, lb, ub, swarmsize=10, maxiter=20)
return xopt
# 加载数据
X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)
y = np.array([2.3, 3.1, 4.1, 4.8, 4.4])
# 用 PSO 进行粒子群优化
alpha, const, length = optimize(X, y)
# 训练高斯过程回归模型并进行预测
gp.set_params(alpha=alpha, kernel__k1__constant_value=const, kernel__k2__length_scale=length)
gp.fit(X, y)
X_test = np.array([6, 7, 8]).reshape(-1, 1)
y_pred, sigma = gp.predict(X_test, return_std=True)
print(y_pred) # 预测的输出值
print(sigma) # 预测的标准差
```
阅读全文