常用卷积神经网络分类模型
时间: 2023-10-26 12:50:47 浏览: 231
卷积神经网络及典型模型介绍
以下是一些常用的卷积神经网络分类模型:
1. LeNet:是卷积神经网络的第一个实验型模型,由于其简单而有效的结构,被广泛应用于手写数字识别等领域。
2. AlexNet:是由Alex Krizhevsky等人在2012年提出的深度卷积神经网络模型,其在ImageNet比赛中夺得了冠军,标志着深度学习在计算机视觉领域的应用开始进入大规模的阶段。
3. VGGNet:由Simonyan和Zisserman在2014年提出。该模型采用小的卷积核和深层的网络结构,提高了模型的准确率。
4. GoogLeNet(Inception):由Google团队在2014年提出。该模型采用了Inception模块,可以有效地减少模型的参数数量。
5. ResNet:由Microsoft Research团队在2015年提出。该模型采用了残差学习,可以使网络更深,并且减少梯度消失的问题,提高了模型的准确率。
6. DenseNet:由Gao Huang等人在2016年提出。该模型采用了密集连接,可以增加网络层数,并且减少梯度消失的问题,提高了模型的准确率。
这些模型都是经典的卷积神经网络模型,被广泛应用于图像分类、物体检测、语义分割等领域。
阅读全文