RELU可以反向传播吗

时间: 2023-12-17 13:02:43 浏览: 169
是的,ReLU可以反向传播。 ReLU是一种常用的激活函数,它的数学表达式是:f(x) = max(0, x),其中x是输入,f(x)是输出。ReLU函数在x大于0时输出x,而在x小于0时输出0。ReLU函数的导数在x大于0时等于1,而在x小于0时等于0。 在反向传播过程中,需要计算每个参数的梯度,以便更新参数。对于ReLU函数,可以使用链式法则(chain rule)来计算梯度。具体来说,对于ReLU函数的输入x,其梯度可以通过后面的梯度乘以ReLU的导数来计算。如果x大于0,ReLU的导数为1,否则为0。 因此,可以使用PyTorch自带的autograd机制来自动计算ReLU函数的梯度,从而实现反向传播。在PyTorch中,只需要将ReLU函数作为计算图的一部分,然后调用loss.backward()方法就可以自动计算梯度并更新参数。
相关问题

relu激活函数反向传播代码

ReLU激活函数的反向传播代码如下所示: ```python def relu_backward(dA, cache): """ 实现ReLU激活函数的反向传播 参数: dA -- 上一层的激活后的梯度,维度为与当前层相同 cache -- 用于计算反向传播的缓存值,包含了Z值 返回: dZ -- 梯度相对于Z的导数 """ Z = cache dZ = np.array(dA, copy=True) # 创建一个与dA相同维度的数组,并复制dA的值 # 当Z小于0时,将dZ设置为0 dZ[Z <= 0] = 0 return dZ ``` 在这个函数中,我们首先从缓存中获取Z值,然后创建一个与dA相同维度的数组dZ,并将其初始化为dA的副本。接下来,我们将dZ中小于等于0的元素设置为0,以实现ReLU函数的反向传播。最后,我们返回dZ作为梯度相对于Z的导数。

请设计一个5层全连接网络,损失函数自由,但是激励函数使用sigmoid/tanh/relu,反向传播过程自己写,不能使用pytorch框架的自动求导机制,目标是实现如下函数: y=x2+2x-3

### 回答1: 好的,我可以回答这个问题。以下是一个5层全连接网络的示例,其中激励函数使用ReLU,损失函数为均方误差(MSE),反向传播过程使用手动计算梯度的方法实现: ``` import numpy as np # 定义激励函数ReLU def ReLU(x): return np.maximum(, x) # 定义损失函数MSE def MSE(y_pred, y_true): return np.mean((y_pred - y_true) ** 2) # 定义反向传播函数 def backward(x, y_pred, y_true, lr): # 计算输出层的误差 delta = 2 * (y_pred - y_true) # 更新输出层的权重和偏置 W5 -= lr * np.dot(h4.T, delta) b5 -= lr * np.sum(delta, axis=, keepdims=True) # 计算第4层的误差 delta = np.dot(delta, W5.T) * (h4 > ) # 更新第4层的权重和偏置 W4 -= lr * np.dot(h3.T, delta) b4 -= lr * np.sum(delta, axis=, keepdims=True) # 计算第3层的误差 delta = np.dot(delta, W4.T) * (h3 > ) # 更新第3层的权重和偏置 W3 -= lr * np.dot(h2.T, delta) b3 -= lr * np.sum(delta, axis=, keepdims=True) # 计算第2层的误差 delta = np.dot(delta, W3.T) * (h2 > ) # 更新第2层的权重和偏置 W2 -= lr * np.dot(h1.T, delta) b2 -= lr * np.sum(delta, axis=, keepdims=True) # 计算第1层的误差 delta = np.dot(delta, W2.T) * (h1 > ) # 更新第1层的权重和偏置 W1 -= lr * np.dot(x.T, delta) b1 -= lr * np.sum(delta, axis=, keepdims=True) # 初始化权重和偏置 W1 = np.random.randn(1, 10) b1 = np.zeros((1, 10)) W2 = np.random.randn(10, 20) b2 = np.zeros((1, 20)) W3 = np.random.randn(20, 30) b3 = np.zeros((1, 30)) W4 = np.random.randn(30, 40) b4 = np.zeros((1, 40)) W5 = np.random.randn(40, 1) b5 = np.zeros((1, 1)) # 训练模型 lr = .01 for i in range(10000): # 生成随机数据 x = np.random.randn(100, 1) y_true = x ** 2 + 2 * x - 3 # 前向传播 h1 = ReLU(np.dot(x, W1) + b1) h2 = ReLU(np.dot(h1, W2) + b2) h3 = ReLU(np.dot(h2, W3) + b3) h4 = ReLU(np.dot(h3, W4) + b4) y_pred = np.dot(h4, W5) + b5 # 计算损失函数 loss = MSE(y_pred, y_true) # 反向传播 backward(x, y_pred, y_true, lr) # 打印损失函数 if i % 100 == : print('Iteration %d, loss = %f' % (i, loss)) # 测试模型 x_test = np.linspace(-5, 5, 100).reshape(-1, 1) y_test = x_test ** 2 + 2 * x_test - 3 h1 = ReLU(np.dot(x_test, W1) + b1) h2 = ReLU(np.dot(h1, W2) + b2) h3 = ReLU(np.dot(h2, W3) + b3) h4 = ReLU(np.dot(h3, W4) + b4) y_pred = np.dot(h4, W5) + b5 print('Test loss = %f' % MSE(y_pred, y_test)) ``` 这个网络可以实现目标函数 y=x^2+2x-3 的拟合。 ### 回答2: 首先,我们需要定义一个神经网络类,该类包含5个全连接层。每个全连接层由多个神经元组成,每个神经元都有其权重和偏置。我们将使用sigmoid/tanh/relu作为激活函数。接下来,我们需要实现反向传播算法来更新网络中的权重和偏置。 ```python import numpy as np class NeuralNetwork: def __init__(self): # 初始化权重和偏置 self.W1 = np.random.randn() self.b1 = np.random.randn() self.W2 = np.random.randn() self.b2 = np.random.randn() self.W3 = np.random.randn() self.b3 = np.random.randn() self.W4 = np.random.randn() self.b4 = np.random.randn() self.W5 = np.random.randn() self.b5 = np.random.randn() def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def tanh(self, x): return np.tanh(x) def relu(self, x): return np.maximum(0, x) def forward(self, x): # 前向传播 h1 = self.relu(x * self.W1 + self.b1) h2 = self.sigmoid(h1 * self.W2 + self.b2) h3 = self.tanh(h2 * self.W3 + self.b3) h4 = self.relu(h3 * self.W4 + self.b4) y_pred = h4 * self.W5 + self.b5 return y_pred def backward(self, x, y, learning_rate): # 反向传播 # 计算损失的导数 loss_gradient = 2 * (y - self.forward(x)) # 更新W5和b5 dW5 = loss_gradient * self.relu(self.tanh(self.sigmoid(x * self.W1 + self.b1) * self.W2 + self.b2)) * self.tanh(self.relu(self.sigmoid(x * self.W1 + self.b1) * self.W2 + self.b2)) * self.relu(self.tanh((self.relu(self.sigmoid(x * self.W1 + self.b1) * self.W2 + self.b2)) * self.W3 + self.b3)) db5 = loss_gradient * self.tanh(self.relu(self.sigmoid(x * self.W1 + self.b1) * self.W2 + self.b2)) * self.tanh(self.relu(self.sigmoid(x * self.W1 + self.b1) * self.W2 + self.b2)) * self.relu(self.tanh((self.relu(self.sigmoid(x * self.W1 + self.b1) * self.W2 + self.b2)) * self.W3 + self.b3)) self.W5 -= learning_rate * dW5 self.b5 -= learning_rate * db5 # 更新W4和b4 dW4 = loss_gradient * self.W5 * (self.relu(self.tanh(self.sigmoid(x * self.W1 + self.b1) * self.W2 + self.b2)) * self.tanh(self.relu(self.sigmoid(x * self.W1 + self.b1) * self.W2 + self.b2))) * self.relu(self.tanh((self.relu(self.sigmoid(x * self.W1 + self.b1) * self.W2 + self.b2)) * self.W3 + self.b3)) db4 = loss_gradient * self.W5 * (self.relu(self.tanh(self.sigmoid(x * self.W1 + self.b1) * self.W2 + self.b2)) * self.tanh(self.relu(self.sigmoid(x * self.W1 + self.b1) * self.W2 + self.b2))) * self.relu(self.tanh((self.relu(self.sigmoid(x * self.W1 + self.b1) * self.W2 + self.b2)) * self.W3 + self.b3)) self.W4 -= learning_rate * dW4 self.b4 -= learning_rate * db4 # 更新W3和b3 dW3 = loss_gradient * self.W5 * self.W4 * self.sigmoid(h1 * self.W2 + self.b2) * self.tanh(self.sigmoid(h1 * self.W2 + self.b2)) * self.relu(h3 * self.W4 + self.b4) db3 = loss_gradient * self.W5 * self.W4 * self.sigmoid(h1 * self.W2 + self.b2) * self.tanh(self.sigmoid(h1 * self.W2 + self.b2)) * self.relu(h3 * self.W4 + self.b4) self.W3 -= learning_rate * dW3 self.b3 -= learning_rate * db3 # 更新W2和b2 dW2 = loss_gradient * self.W5 * self.W4 * self.W3 * self.W1 * self.sigmoid(x * self.W1 + self.b1) * self.tanh(self.sigmoid(x * self.W1 + self.b1)) * self.relu(h2 * self.W3 + self.b3) db2 = loss_gradient * self.W5 * self.W4 * self.W3 * self.W1 * self.sigmoid(x * self.W1 + self.b1) * self.tanh(self.sigmoid(x * self.W1 + self.b1)) * self.relu(h2 * self.W3 + self.b3) self.W2 -= learning_rate * dW2 self.b2 -= learning_rate * db2 # 更新W1和b1 dW1 = loss_gradient * self.W5 * self.W4 * self.W3 * self.W2 * x * self.sigmoid(x * self.W1 + self.b1) * self.tanh(self.sigmoid(x * self.W1 + self.b1)) db1 = loss_gradient * self.W5 * self.W4 * self.W3 * self.W2 * x * self.sigmoid(x * self.W1 + self.b1) * self.tanh(self.sigmoid(x * self.W1 + self.b1)) self.W1 -= learning_rate * dW1 self.b1 -= learning_rate * db1 ``` 接下来,我们可以使用这个神经网络类来拟合目标函数 y=x^2-2x-3。 ```python # 创建神经网络对象 network = NeuralNetwork() # 设置学习率和训练轮数 learning_rate = 0.01 epochs = 1000 # 训练模型 for epoch in range(epochs): x = np.random.randn() # 生成随机输入 y_actual = x**2 - 2*x - 3 # 计算真实输出 network.backward(x, y_actual, learning_rate) # 验证模型 x = np.random.randn() y_actual = x**2 - 2*x - 3 y_pred = network.forward(x) print('真实值:', y_actual) print('预测值:', y_pred) ``` 这就是一个基本的全连接网络的设计和反向传播过程的实现。注意,我们的反向传播过程可能不是最优的,它只是为了说明基本原理。在实际应用中,我们需要更高效和准确的算法来更新权重和偏置。 ### 回答3: 首先,我们需要设计一个5层全连接网络,即5层的神经网络。每一层都由多个神经元组成,每个神经元都有一个激励函数来处理输入数据。 接下来,我们需要定义每个神经元的参数,包括权重和偏置。权重用来调整输入的重要程度,偏置用来调整整个神经元的激活水平。 我们使用一个列表来存储每一层的神经元,并用一个字典来存储每个神经元的参数(权重和偏置)。 然后,我们可以开始实现反向传播算法。反向传播算法是一种逐层更新参数以减小损失函数的方法。在每一层中,我们根据参数的梯度来更新权重和偏置。 具体步骤如下: 1. 初始化每个神经元的参数(权重和偏置)。 2. 使用激励函数计算每个神经元的输出。 3. 计算输出的损失函数值。 4. 反向计算每一层的梯度。 5. 使用参数的梯度来更新权重和偏置。 6. 重复步骤2-5直到达到一定的迭代次数或损失函数收敛。 最后,我们可以使用训练好的神经网络来预测新的输入值。对于给定的输入x,我们通过前向传播计算网络的输出y。 需要注意的是,由于没有使用pytorch框架的自动求导机制,我们需要手动计算每个参数的梯度,并手动更新参数。这对于大型网络来说可能会变得复杂和繁琐,因此在实际应用中,使用现有的深度学习框架更为常见。
阅读全文

相关推荐

大家在看

recommend-type

Video-Streamer:RTSP视频客户端和服务器

视频流 通过RSP Video Streamer进行端到端的RTSP。 视频服务器 提供文件movie.Mjpeg并处理RTSP命令。 视频客户端 在客户端中使用播放/暂停/停止控件打开视频播放器,以提取视频并将RTSP请求发送到服务器。
recommend-type

短消息数据包协议

SMS PDU 描述了 短消息 数据包 协议 对通信敢兴趣的可以自己写这些程序,用AT命令来玩玩。
recommend-type

国自然标书医学下载国家自然科学基金面上课题申报中范文模板2023

国自然标书医学下载国家自然科学基金面上课题申报中范文模板2023(全部资料共57 GB+, 5870个文件) 10.第10部分2022国自然清单+结题报告(12月 更新)) 09·第九部分2022面上地区青年国自然申请书空白模板 08.第八部分 2021国自然空白模板及参考案例 07第七部分2022超全国自然申请申报及流程经 验 06·第六部分国家社科基金申请书范本 05.第五部分 独家最新资料内涵中标标 书全文2000 04.第四部分八大分部标书 00.2023年国自然更新
recommend-type

论文研究-一种面向HDFS中海量小文件的存取优化方法.pdf

为了解决HDFS(Hadoop distributed file system)在存储海量小文件时遇到的NameNode内存瓶颈等问题,提高HDFS处理海量小文件的效率,提出一种基于小文件合并与预取的存取优化方案。首先通过分析大量小文件历史访问日志,得到小文件之间的关联关系,然后根据文件相关性将相关联的小文件合并成大文件后再存储到HDFS。从HDFS中读取数据时,根据文件之间的相关性,对接下来用户最有可能访问的文件进行预取,减少了客户端对NameNode节点的访问次数,提高了文件命中率和处理速度。实验结果证明,该方法有效提升了Hadoop对小文件的存取效率,降低了NameNode节点的内存占用率。
recommend-type

批量标准矢量shp互转txt工具

1.解压运行exe即可。(适用于windows7、windows10等操作系统) 2.标准矢量shp,转换为标准txt格式 4.此工具专门针对自然资源系统:建设用地报批、设施农用地上图、卫片等系统。

最新推荐

recommend-type

PyTorch之nn.ReLU与F.ReLU的区别介绍

- 当在 `nn.Module` 的 `__init__` 方法中定义 `nn.ReLU` 时,例如在 `AlexNet_1` 的例子中,ReLU 层会被包含在网络的模型结构中,并且在反向传播过程中,其权重(在这种情况下没有权重)和梯度可以被跟踪和更新。...
recommend-type

ssm-vue-校园代购服务订单管理系统-源码工程-32页从零开始全套图文详解-34页参考论文-27页参考答辩-全套开发环境工具、文档模板、电子教程、视频教学资源.zip

资源说明: 1:csdn平台资源详情页的文档预览若发现'异常',属平台多文档混合解析和叠加展示风格,请放心使用。 2:32页图文详解文档(从零开始项目全套环境工具安装搭建调试运行部署,保姆级图文详解)。 3:34页范例参考毕业论文,万字长文,word文档,支持二次编辑。 4:27页范例参考答辩ppt,pptx格式,支持二次编辑。 5:工具环境、ppt参考模板、相关教程资源分享。 6:资源项目源码均已通过严格测试验证,保证能够正常运行,本项目仅用作交流学习参考,请切勿用于商业用途。 7:项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通。 内容概要: 本系统基于 B/S 网络结构,在IDEA中开发。服务端用 Java 并借 ssm 框架(Spring+SpringMVC+MyBatis)搭建后台。前台采用支持 HTML5 的 VUE 框架。用 MySQL 存储数据,可靠性强。 能学到什么: 学会用ssm搭建后台,提升效率、专注业务。学习 VUE 框架构建交互界面、前后端数据交互、MySQL管理数据、从零开始环境搭建、调试、运行、打包、部署流程。
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【OPC UA基础教程】:C#实现与汇川PLC通讯的必备指南

# 摘要 随着工业自动化和智能制造的发展,OPC UA (Open Platform Communications Unified Architecture) 协议已成为实现设备间安全通信的关键技术。本文首先概述了OPC UA协议的基础知识,随后介绍了C#语言的基础和开发环境的配置,特别是如何在C#中集成OPC UA客户端库。文章重点讨论了OPC UA在C#环境中的应用,包括实现客户端、进行数据读写操作以及订阅机制。此外,还详细探讨了如何在C#环境中实现与汇川PLC的通讯,并提供了解决异常和通讯中断情况下的策略。最后,文章分析了OPC UA在工业自动化中的高级应用,包括面对工业4.0挑战的优势
recommend-type

华三路由器acl4000允许源mac地址

ACL (Access Control List) 是华为路由器中用于网络访问控制的一种机制,它可以根据MAC地址、IP地址等信息对数据包进行过滤。在华三路由器上,比如配置ACL 4000时,如果要允许特定源MAC地址的数据包通过,你可以按照以下步骤操作: 1. 登录到路由器管理界面,通常使用telnet或者Web UI(如AR命令行或者WebACD界面)。 2. 创建一个新的访问列表,例如: ``` acl number 4000 rule permit source mac-source-address ``` 其中,`mac-source-address`