RESnet神经网络
时间: 2023-11-14 14:11:39 浏览: 128
神经网络ror resenet模型
ResNet(Residual Network)是一种深度卷积神经网络结构,由微软亚洲研究院的何凯明等人于2015年提出。ResNet的主要思想是通过使用"残差块"来解决深度卷积神经网络中的梯度消失和梯度爆炸问题,从而允许更深的网络架构,提高图像分类的准确性。ResNet的一个重要变体是ResNet-50,它是一个包含50个卷积层的深度神经网络,经过训练可以用于图像分类和目标检测等计算机视觉任务。ResNet系列结构通过引入跳跃连接来解决深度神经网络中的梯度消失问题。跳跃连接将输入直接加到了输出上,从而让网络可以学习出残差的形式,即每一层学习的是与上一层输出之间的差异。这使得训练更深的网络更加容易,并且可以显著提高准确率。
阅读全文