Resnet残差神经网络
时间: 2024-04-21 12:21:36 浏览: 119
ResNet残差网络
ResNet(Residual Neural Network)是一种深度残差神经网络,由微软研究院的Kaiming He等人于2015年提出。它通过引入残差连接(residual connection)来解决深度神经网络训练过程中的梯度消失和梯度爆炸问题。
在传统的神经网络中,每一层的输入都是前一层的输出,通过多个非线性变换层逐层堆叠,最终得到输出。然而,随着网络层数的增加,梯度在反向传播过程中容易消失或爆炸,导致网络难以训练。ResNet通过引入残差块(residual block)来解决这个问题。
残差块由两个主要部分组成:恒等映射(identity mapping)和残差映射(residual mapping)。恒等映射将输入直接传递到输出,而残差映射则对输入进行变换。通过将恒等映射与残差映射相加,得到残差块的输出。这种设计使得网络可以学习到残差部分,从而更好地适应数据。
ResNet的核心思想是通过跨层连接(skip connection)来构建深层网络。这些跨层连接可以绕过一些非线性变换层,使得梯度能够更快地传播。此外,ResNet还引入了批量归一化(batch normalization)和全局平均池化(global average pooling)等技术,进一步提升了网络的性能。
阅读全文