self.backbone = models.vgg19(pretrained=pretrained).features[:27]
时间: 2024-06-03 09:07:36 浏览: 149
This line of code initializes the backbone of the neural network using the VGG19 architecture. The "pretrained" parameter indicates whether to use the pre-trained weights or not. The backbone consists of the first 27 layers of the VGG19 network, which includes convolutional and pooling layers. This backbone is commonly used in object detection and image recognition tasks as it is known to perform well on these types of problems.
相关问题
from collections import OrderedDict import torch import torch.nn.functional as F import torchvision from torch import nn import models.vgg_ as models class BackboneBase_VGG(nn.Module): def __init__(self, backbone: nn.Module, num_channels: int, name: str, return_interm_layers: bool): super().__init__() features = list(backbone.features.children()) if return_interm_layers: if name == 'vgg16_bn': self.body1 = nn.Sequential(*features[:13]) self.body2 = nn.Sequential(*features[13:23]) self.body3 = nn.Sequential(*features[23:33]) self.body4 = nn.Sequential(*features[33:43]) else: self.body1 = nn.Sequential(*features[:9]) self.body2 = nn.Sequential(*features[9:16]) self.body3 = nn.Sequential(*features[16:23]) self.body4 = nn.Sequential(*features[23:30]) else: if name == 'vgg16_bn': self.body = nn.Sequential(*features[:44]) # 16x down-sample elif name == 'vgg16': self.body = nn.Sequential(*features[:30]) # 16x down-sample self.num_channels = num_channels self.return_interm_layers = return_interm_layers def forward(self, tensor_list): out = [] if self.return_interm_layers: xs = tensor_list for _, layer in enumerate([self.body1, self.body2, self.body3, self.body4]): xs = layer(xs) out.append(xs) else: xs = self.body(tensor_list) out.append(xs) return out class Backbone_VGG(BackboneBase_VGG): """ResNet backbone with frozen BatchNorm.""" def __init__(self, name: str, return_interm_layers: bool): if name == 'vgg16_bn': backbone = models.vgg16_bn(pretrained=True) elif name == 'vgg16': backbone = models.vgg16(pretrained=True) num_channels = 256 super().__init__(backbone, num_channels, name, return_interm_layers) def build_backbone(args): backbone = Backbone_VGG(args.backbone, True) return backbone if __name__ == '__main__': Backbone_VGG('vgg16', True)
这段代码是一个基于VGG的神经网络模型的定义,主要用于特征提取。其中包括两个类:`BackboneBase_VGG`和`Backbone_VGG`以及一个函数`build_backbone`。
`BackboneBase_VGG`类是VGG的基础类,用于构建VGG神经网络模型。它的初始化函数接受四个参数:`backbone`,`num_channels`,`name`和`return_interm_layers`,其中`backbone`表示VGG的主干网络,`num_channels`表示输出的通道数,`name`表示VGG的名称,`return_interm_layers`表示是否返回中间层的输出。
`Backbone_VGG`类继承自`BackboneBase_VGG`类,主要用于构建一个冻结BatchNorm的VGG神经网络模型。它的初始化函数接受两个参数:`name`和`return_interm_layers`,其中`name`表示VGG的名称,`return_interm_layers`表示是否返回中间层的输出。这个类的主要作用是将`BackboneBase_VGG`类中的属性和方法进行实例化,然后通过调用父类的`__init__`方法进行初始化。
`build_backbone`函数是用于构建VGG神经网络模型的函数,它接受一个参数`args`,其中包含了VGG神经网络模型的一些参数。在这个函数中,会调用`Backbone_VGG`类来构建一个VGG神经网络模型,并将其返回。
最后,在`if __name__ == '__main__':`中,会创建一个`Backbone_VGG`类的实例对象,并传入参数`'vgg16'`和`True`进行初始化。
import torch import torch.nn as nn import torchvision.models as models class FCNTransformer(nn.Module): def __init__(self, num_classes): super(FCNTransformer, self).__init__() # Load pre-trained V16 model as FCN backbone vgg16 = models.vgg16(pretrained=True) features = list(vgg16.features.children()) self.backbone = nn.Sequential(*features) # FCN layers self.fcn_layers = nn.Sequential( nn.Conv2d(512, 4096, 7), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, 4096, 1), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, num_classes, 1) ) # Transformer layers self.transformer = nn.Transformer( d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1 ) def forward(self,x): # Backbone feature extraction features = self.backbone(x) # FCN layers fcn_out = self.fcn_layers(features) # Reshaping output for transformer input b, c, h, w = fcn_out.size() fcn_out = fcn_out.squeeze().view(c, b, -1).permute(2, 0, 1) # Reshaping for transformer input # Transformer encoding transformer_out = self.transformer.encode(fcn_out) # Reshaping output for segmentation prediction transformer_out = transformer_out.permute(1, 2, 0).view(b, c, h, w) return transformer_out if __name__ == '__main__': a = torch.randn(1, 3, 512, 512) model = FCNTransformer(num_classes=2) print(model(a).shape) 改进这段代码
这段代码看起来已经很完整了,但有一些改进可以提出。
首先,由于我们只需要使用 VGG16 的特征提取部分作为 FCN 的 backbone,而不需要其完整的网络结构,因此可以使用 `vgg16.features` 而不是 `vgg16` 来加载预训练模型。这样可以减少模型的参数量。
其次,为了更好地利用 GPU 的性能,可以将输入数据和模型移动到 GPU 上进行计算。可以使用 `to()` 方法将数据和模型移动到 GPU 上,如 `model.to(device)` 和 `a.to(device)`,其中 `device` 是你希望在其上运行代码的设备(如 `'cuda'`)。
最后,你可以考虑添加一些必要的注释来解释代码的功能和每个部分的作用。这有助于其他人更好地理解你的代码。
下面是改进后的代码:
```python
import torch
import torch.nn as nn
import torchvision.models as models
class FCNTransformer(nn.Module):
def __init__(self, num_classes):
super(FCNTransformer, self).__init__()
# Load pre-trained V16 model as FCN backbone
vgg16 = models.vgg16(pretrained=True)
features = list(vgg16.features.children())
self.backbone = nn.Sequential(*features)
# FCN layers
self.fcn_layers = nn.Sequential(
nn.Conv2d(512, 4096, 7),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Conv2d(4096, 4096, 1),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Conv2d(4096, num_classes, 1)
)
# Transformer layers
self.transformer = nn.Transformer(
d_model=512,
nhead=8,
num_encoder_layers=6,
num_decoder_layers=6,
dim_feedforward=2048,
dropout=0.1
)
def forward(self, x):
# Backbone feature extraction
features = self.backbone(x)
# FCN layers
fcn_out = self.fcn_layers(features)
# Reshaping output for transformer input
b, c, h, w = fcn_out.size()
fcn_out = fcn_out.squeeze().view(c, b, -1).permute(2, 0, 1) # Reshaping for transformer input
# Transformer encoding
transformer_out = self.transformer.encode(fcn_out)
# Reshaping output for segmentation prediction
transformer_out = transformer_out.permute(1, 2, 0).view(b, c, h, w)
return transformer_out
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
a = torch.randn(1, 3, 512, 512).to(device)
model = FCNTransformer(num_classes=2).to(device)
print(model(a).shape)
```
这样,你的代码就更完善了,同时也考虑了在 GPU 上进行计算的情况。
阅读全文