相关代码或算法
时间: 2023-11-20 09:18:15 浏览: 71
算法代码和相关内容
以下是使用PyTorch实现自注意力机制的代码:
```python
import torch
import torch.nn as nn
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert (self.head_dim * heads == embed_size), "Embed size needs to be divisible by heads"
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads*self.head_dim, embed_size)
def forward(self, values, keys, queries, mask):
N = queries.shape[0]
value_len, key_len, query_len = values.shape[1], keys.shape[1], queries.shape[1]
# Split embedding into self.heads pieces
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
queries = queries.reshape(N, query_len, self.heads, self.head_dim)
# Compute dot product of queries and keys for each head
energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
# Apply mask to exclude padded tokens from attention
if mask is not None:
energy = energy.masked_fill(mask == 0, float("-1e20"))
# Apply softmax to get attention scores
attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3)
# Compute weighted sum of values for each head
out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(N, query_len, self.heads*self.head_dim)
# Concatenate heads and pass through final linear layer
out = self.fc_out(out)
return out
```
以上代码实现了一个SelfAttention模块,可以在神经网络中使用自注意力机制来加强对特定词的关注。在模型的forward中,需要传入待加权的values、keys、queries,以及mask(如果需要)。其中,values、keys、queries的shape均为[N, seq_len, embed_size],表示batch大小、序列长度和词嵌入维度,mask的shape为[N, 1, seq_len],表示哪些位置需要被mask。模型输出的shape为[N, seq_len, embed_size],表示加权后的词嵌入。
阅读全文