mean_list.append(np.mean(self.data[:, i])) std_list.append(np.std(self.data[:, i]))
时间: 2023-06-19 17:04:28 浏览: 81
这段代码是将self.data中第i列的均值和标准差分别添加到mean_list和std_list中。其中,np.mean()和np.std()是numpy库中的函数,分别用于计算均值和标准差。self.data[:, i]表示取self.data中的第i列数据,":"表示取所有行数据。因此,np.mean(self.data[:, i])计算的是self.data中第i列的均值,np.std(self.data[:, i])计算的是self.data中第i列的标准差。最终,mean_list和std_list中存储的分别是self.data中每一列数据的均值和标准差。
相关问题
y = data['血糖']data = data.drop(columns=['血糖'])# 归一化mean = train.mean(axis=0)std = train.std(axis=0)train = (train - mean) / stdtest = (test - mean) / std# 执行PCA降维pca = PCA(n_components=10)train = pca.fit_transform(train)test = pca.transform(test)input_dim = 10 # 降维后的输入特征维度time_steps = 60output_steps = 1 # 可以预测一步,或预测多步#target_index = data.columns.tolist().index('血糖') # 待预测变量是第几个特征class MyDataset(Dataset): def __init__(self, data, label, time_steps, output_steps, target_index): # 新增label参数 self.time_steps = time_steps self.output_steps = output_steps self.target_index = target_index self.data = self.transform(data.astype(np.float32)) self.label = label # 定义self.label def transform(self, data): output = [] for i in range(data.shape[0] - self.time_steps - self.output_steps): output.append(data[i: (i + self.time_steps + self.output_steps), :]) return np.stack(output) def __getitem__(self, index): data = self.data[index, 0:self.time_steps, :] label = self.label[index + self.time_steps] # 注意,这里改为预测一步之后的标签的运算过程
这段代码定义了一个自定义数据集 MyDataset,用于将数据转换成模型输入所需的格式。它接收包括所有特征在内的数据和标签,以及时间步数 time_steps 和输出步数 output_steps,用于将数据转换成模型需要的形式。在 __init__ 函数中,将传入的数据转换成 float32 类型并进行归一化处理。在 transform 函数中,将数据按照 time_steps 和 output_steps 划分成多个小块,并将这些小块组合成一个三维数组。在 __getitem__ 函数中,根据索引获取对应的数据和标签,并将标签改为预测一步之后的标签。注意,这里的 target_index 已经不再需要了,因为目标变量已经在 data 中被删除了。
阅读全文