torch 构造 GAN 网络
时间: 2023-08-04 21:24:44 浏览: 70
GAN(Generative Adversarial Networks)是一种深度学习模型,用于生成具有与训练数据相似的新数据。GAN模型由两个神经网络组成:生成器(Generator)和判别器(Discriminator)。生成器接受一些噪声向量作为输入,并尝试生成新的数据样本,而判别器则接受生成器生成的数据样本和真实数据样本,并尝试区分它们。
下面是一个简单的GAN网络的构造方法,使用PyTorch框架来实现:
```
import torch
import torch.nn as nn
# 定义生成器模型
class Generator(nn.Module):
def __init__(self, input_size, output_size):
super(Generator, self).__init__()
self.fc1 = nn.Linear(input_size, 128)
self.fc2 = nn.Linear(128, 256)
self.fc3 = nn.Linear(256, 512)
self.fc4 = nn.Linear(512, output_size)
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.relu(self.fc3(x))
x = self.tanh(self.fc4(x))
return x
# 定义判别器模型
class Discriminator(nn.Module):
def __init__(self, input_size):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(input_size, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.sigmoid(self.fc3(x))
return x
# 定义训练函数
def train(generator, discriminator, data, epochs, batch_size, learning_rate):
# 定义损失函数
criterion = nn.BCELoss()
# 定义优化器
gen_optimizer = torch.optim.Adam(generator.parameters(), lr=learning_rate)
dis_optimizer = torch.optim.Adam(discriminator.parameters(), lr=learning_rate)
# 训练GAN模型
for epoch in range(epochs):
for i in range(0, len(data), batch_size):
# 训练判别器
real_data = data[i:i+batch_size]
real_labels = torch.ones((len(real_data), 1))
noise = torch.randn((len(real_data), 100))
fake_data = generator(noise).detach()
fake_labels = torch.zeros((len(fake_data), 1))
dis_optimizer.zero_grad()
real_loss = criterion(discriminator(real_data), real_labels)
fake_loss = criterion(discriminator(fake_data), fake_labels)
dis_loss = real_loss + fake_loss
dis_loss.backward()
dis_optimizer.step()
# 训练生成器
noise = torch.randn((len(real_data), 100))
gen_optimizer.zero_grad()
gen_loss = criterion(discriminator(generator(noise)), real_labels)
gen_loss.backward()
gen_optimizer.step()
print(f"Epoch [{epoch+1}/{epochs}], Generator loss: {gen_loss.item()}, Discriminator loss: {dis_loss.item()}")
# 定义一些超参数
input_size = 100
output_size = 784
epochs = 50
batch_size = 64
learning_rate = 0.0002
# 加载MNIST数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
trainset = datasets.MNIST('~/.pytorch/MNIST_data/', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True)
# 实例化生成器和判别器
generator = Generator(input_size, output_size)
discriminator = Discriminator(output_size)
# 训练GAN模型
train(generator, discriminator, trainloader, epochs, batch_size, learning_rate)
```
在这个例子中,我们定义了一个简单的生成器模型和判别器模型,并使用MNIST数据集训练了GAN模型。在训练过程中,我们使用了交替训练的策略,即先训练判别器,再训练生成器。我们还定义了一些超参数,如输入向量的大小、输出向量的大小、训练周期数、批次大小和学习率等。
阅读全文