使用java语言编写paillier加密算法程序,对明文40和60进行加密,且可以输入不同的随机数进行验证加密和解密是否正确
时间: 2025-01-05 20:41:41 浏览: 8
在Java中,你可以创建一个简单的Paillier加密程序,包括生成密钥、加密和解密步骤。以下是基于Paillier公钥密码系统的基本实现:
```java
import java.math.BigInteger;
public class PaillierExample {
private static final int KEY_SIZE_BITS = 1024; // 可根据需求调整密钥长度
// 生成密钥对
public static void generateKeys() {
BigInteger p = new BigInteger(KEY_SIZE_BITS, SecureRandom.getInstanceStrong());
BigInteger q = new BigInteger(KEY_SIZE_BITS, SecureRandom.getInstanceStrong());
while (gcd(p, q).compareTo(BigInteger.ONE) != 0) { // 确保p和q互质
p = new BigInteger(KEY_SIZE_BITS, SecureRandom.getInstanceStrong());
q = new BigInteger(KEY_SIZE_BITS, SecureRandom.getInstanceStrong());
}
BigInteger lcm = p.multiply(q).divide(gcd(p, q)); // 计算最小公倍数
BigInteger n = lcm.multiply(lcm.add(BigInteger.ONE));
BigInteger phi = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));
BigInteger g = getGenerator(phi);
ECPoint publicKey = new ECPublicKeySpec(new ECDomainParameterSpec(p, q), g);
RSAKeyPairParameters privateKey = new RSAKeyPairParameters(p, q, lcm.add(BigInteger.ONE), lcm.subtract(BigInteger.ONE));
// 保存或显示密钥
System.out.println("Public Key (N): " + n.toString());
System.out.println("Private Key: (" + privateKey.getModulus().toString() + ", " + privateKey.getExponent().toString() + ")");
}
// 选择素数并获取其生成元
private static BigInteger getGenerator(BigInteger phi) {
BigInteger two = new BigInteger("2");
BigInteger potentialGenerator = two.nextProbablePrime(phi.subtract(two));
while (!potentialGenerator.mod(phi).equals(BigInteger.ONE)) {
potentialGenerator = potentialGenerator.nextProbablePrime(phi.subtract(two));
}
return potentialGenerator;
}
// 加密函数
public static BigInteger encrypt(int plaintext, BigInteger n, BigInteger g) {
BigInteger t = BigInteger.valueOf(plaintext);
BigInteger e = BigInteger.valueOf(g.subtract(BigInteger.ONE));
BigInteger c1 = t.modPow(e, n);
BigInteger r = BigInteger.probablePrime(n.bitLength(), SecureRandom.getInstanceStrong()).add(1); // 随机数
BigInteger c = c1.multiply(r).modPow(n, n);
return c;
}
// 解密函数
public static BigInteger decrypt(BigInteger ciphertext, BigInteger n, BigInteger lcm, BigInteger privateKey) {
BigInteger d = lcm.subtract(BigInteger.ONE);
BigInteger c1 = ciphertext.modPow(d, n).divide(ciphertext.mod(n));
BigInteger c0 = ciphertext.divide(r);
BigInteger plainText = c1.subtract(c0).mod(n);
return plainText;
}
// 主函数,演示加密和解密
public static void main(String[] args) {
generateKeys();
BigInteger n = ...; // 获取公钥的n值
BigInteger g = ...; // 获取公钥的g值
BigInteger ciphertext = encrypt(40, n, g); // 对40进行加密
System.out.println("Encrypted message: " + ciphertext.toString());
BigInteger decryptedMessage = decrypt(ciphertext, n, ...); // 使用私钥解密
if (decryptedMessage.equals(BigInteger.valueOf(40))) {
System.out.println("Decryption successful. Decrypted message: " + decryptedMessage);
} else {
System.out.println("Decryption failed.");
}
// 用户可以尝试输入不同的随机数来验证加密和解密
int userInput = ...;
BigInteger userInputEncrypted = encrypt(userInput, n, g);
BigInteger userInputDecrypted = decrypt(userInputEncrypted, n, ...);
System.out.println("User input after encryption and decryption: " + userInputDecrypted);
}
// 计算最大公约数
private static BigInteger gcd(BigInteger a, BigInteger b) {
return b == BigInteger.ZERO ? a : gcd(b, a.mod(b));
}
}
```
在这个例子中,你需要提供足够长的随机数生成器(SecureRandom.getInstanceStrong()),并且在主函数中填充缺失的公钥参数。用户可以尝试改变`main`函数中的用户输入来验证加密和解密的正确性。注意,实际应用中需要妥善存储和处理私钥,此处仅为了演示。
阅读全文