样条插值算法c语言实现
时间: 2023-11-25 20:50:45 浏览: 144
根据提供的引用内容,无法回答关于遗传算法和哈密尔顿图的问题。以下是样条插值算法的C语言实现:
样条插值算法是一种数值分析方法,用于在给定一组数据点的情况下,生成一个连续的函数,该函数在每个数据点处都与给定的数据点相等,并且在相邻数据点之间具有平滑的一阶或二阶导数。以下是样条插值算法的C语言实现:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define N 10
double x[N] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
double y[N] = {0, 0.8415, 0.9093, 0.1411, -0.7568, -0.9589, -0.2794, 0.6569, 0.9894, 0.4121};
double h[N], b[N], u[N], v[N], z[N];
void spline()
{
int i, k;
double p, qn, sig, un;
h[0] = x[1] - x[0];
b[0] = 2.0 * (h[0] + x[2] - x[0]);
u[0] = 6.0 * ((y[2] - y[1]) / h[0] - (y[1] - y[0]) / h[0]);
for (i = 1; i < N - 1; i++)
{
h[i] = x[i + 1] - x[i];
b[i] = 2.0 * (h[i] + h[i - 1]);
u[i] = 6.0 * ((y[i + 1] - y[i]) / h[i] - (y[i] - y[i - 1]) / h[i - 1]);
z[i] = 0.0;
}
qn = 0.0;
un = 0.0;
z[0] = un / b[0];
for (i = 1; i < N - 1; i++)
{
sig = h[i - 1] / b[i - 1];
p = sig * z[i - 1] + 2.0;
z[i] = (sig - 1.0) / p;
u[i] = (u[i] - h[i - 1] * u[i - 1] / b[i - 1]) / p;
}
qn = (un - h[N - 2] * u[N - 2]) / (h[N - 2] * z[N - 2] + b[N - 2]);
for (k = N - 2; k >= 0; k--)
{
z[k] = z[k] * z[k + 1] + u[k];
}
for (i = 0; i < N - 1; i++)
{
double xi, xi1, yi, yi1, ai, bi, ci, di;
xi = x[i];
xi1 = x[i + 1];
yi = y[i];
yi1 = y[i + 1];
ai = z[i] / (6.0 * h[i]);
bi = z[i + 1] / (6.0 * h[i]);
ci = (y[i + 1] / h[i]) - ((z[i + 1] * h[i]) / 6.0);
di = (y[i] / h[i]) - ((z[i] * h[i]) / 6.0);
printf("S%d(x) = ", i);
printf("%.4f(x - %.4f)^3 + ", ai, xi1);
printf("%.4f(x - %.4f)^3 + ", bi, xi);
printf("%.4f(x - %.4f) + ", ci, xi1);
printf("%.4f(x - %.4f)\n", di, xi);
}
}
int main()
{
spline();
return 0;
}
```
阅读全文