如何在Python中使用支持向量机(SVR)进行回归分析?
时间: 2024-10-22 19:08:51 浏览: 46
遗传算法GA优化支持向量机回归算法SVR,python写,自带数据集
在Python中使用支持向量机(SVR)进行回归分析,通常需要通过scikit-learn库来实现。以下是一个基本流程:
1. **导入库**:
```python
from sklearn import svm
from sklearn.model_selection import train_test_split
import numpy as np
```
2. **加载数据**:假设你已经有了一个numpy数组,其中包含特征和目标值。例如:
```python
X = ... # 特征数据
y = ... # 目标数值
```
3. **数据分割**:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
4. **创建SVR模型**:
```python
svr = svm.SVR(kernel='linear') # 可以尝试其他内核,如'poly', 'rbf'等
```
5. **拟合模型**:
```python
svr.fit(X_train, y_train)
```
6. **预测**:
```python
y_pred = svr.predict(X_test)
```
7. **评估模型**:
```python
from sklearn.metrics import mean_squared_error, r2_score
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("MSE:", mse)
print("R2 Score:", r2)
```
阅读全文