svr支持向量机回归python
时间: 2024-09-22 08:05:25 浏览: 107
Support Vector Regression (SVR) 是一种基于支持向量机(SVM)的回归算法,用于处理非线性和高维数据的预测问题。在Python中,可以利用Scikit-Learn库来实现SVR。以下是使用SVR的基本步骤:
1. 导入必要的库:
```python
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
```
2. 加载数据集并准备数据:
```python
# 假设df是包含特征和目标变量的数据框
X = df.drop('target_column', axis=1)
y = df['target_column']
```
3. 划分训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
4. 创建并训练SVR模型:
```python
model = SVR(kernel='linear') # 可以选择不同的内核函数如 'linear', 'poly', 'rbf'
model.fit(X_train, y_train)
```
5. 预测和评估性能:
```python
y_pred = model.predict(X_test)
from sklearn.metrics import mean_squared_error, r2_score
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
```
阅读全文