svr支持向量机代码
时间: 2024-01-09 13:22:44 浏览: 89
SVR(支持向量回归)是一种机器学习算法,用于解决回归问题。它基于支持向量机(SVM)算法,通过寻找一个最优的超平面来拟合数据。
下面是一个简单的SVR代码示例:
```python
# 导入所需的库
from sklearn.svm import SVR
import numpy as np
# 创建训练数据
X = np.sort(5 * np.random.rand(100, 1), axis=0)
y = np.sin(X).ravel()
# 创建SVR模型并进行训练
svr = SVR(kernel='rbf', C=1e3, gamma=0.1)
svr.fit(X, y)
# 创建测试数据
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
# 使用SVR进行预测
y_pred = svr.predict(X_test)
# 打印预测结果
print(y_pred)
```
在这个示例中,我们首先导入了需要的库,然后创建了一些随机的训练数据。接下来,我们使用SVR模型进行训练,并创建了一些测试数据。最后,我们使用训练好的模型对测试数据进行预测,并打印出预测结果。
请注意,这只是一个简单的示例代码,实际使用SVR时可能需要根据具体问题进行参数调整和数据处理。
相关问题
svr支持向量机回归代码
以下是Python中使用SVR(支持向量机回归)的代码示例:
```python
# 导入所需的库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVR
# 生成数据
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel()
# 添加噪声
y[::5] += 3 * (0.5 - np.random.rand(16))
# 训练SVR模型
C = 1e3
svr_rbf = SVR(kernel='rbf', C=C, gamma=0.1)
svr_lin = SVR(kernel='linear', C=C)
svr_poly = SVR(kernel='poly', C=C, degree=3)
y_rbf = svr_rbf.fit(X, y).predict(X)
y_lin = svr_lin.fit(X, y).predict(X)
y_poly = svr_poly.fit(X, y).predict(X)
# 绘制结果
lw = 2
plt.scatter(X, y, color='darkorange', label='data')
plt.plot(X, y_rbf, color='navy', lw=lw, label='RBF model')
plt.plot(X, y_lin, color='c', lw=lw, label='Linear model')
plt.plot(X, y_poly, color='cornflowerblue', lw=lw, label='Polynomial model')
plt.xlabel('data')
plt.ylabel('target')
plt.title('Support Vector Regression')
plt.legend()
plt.show()
```
此代码使用了SVR来拟合一个带有噪声的正弦曲线,并绘制了不同内核的SVR的结果。在代码中,我们定义了三个不同的内核函数:RBF,线性和多项式。然后使用这些内核训练了三个不同的SVR模型,并将它们的预测结果绘制在同一个图表中。
svr支持向量机回归 c++代码
以下是使用C语言实现的SVR(支持向量机回归)代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#define MAX_LINE_LENGTH 1024
#define MAX_FEATURES 1000
#define MAX_SAMPLES 1000
#define MAX_ITERATIONS 10000
#define TOLERANCE 0.001
typedef struct {
double alpha;
double b;
} svm_model;
typedef struct {
double* x;
double y;
} sample;
int num_samples, num_features;
sample samples[MAX_SAMPLES];
double kernel[MAX_SAMPLES][MAX_SAMPLES];
double eps = 0.0001;
double kernel_function(double* x1, double* x2) {
double result = 0.0;
for (int i = 0; i < num_features; i++) {
result += (x1[i] - x2[i]) * (x1[i] - x2[i]);
}
return exp(-result / (2.0 * eps * eps));
}
void calculate_kernel() {
for (int i = 0; i < num_samples; i++) {
for (int j = 0; j < num_samples; j++) {
kernel[i][j] = kernel_function(samples[i].x, samples[j].x);
}
}
}
double predict(double* x, svm_model* model) {
double result = 0.0;
for (int i = 0; i < num_samples; i++) {
result += model->alpha * samples[i].y * kernel_function(x, samples[i].x);
}
return result - model->b;
}
double calculate_error(int index, svm_model* model) {
double result = 0.0;
for (int i = 0; i < num_samples; i++) {
result += model->alpha * samples[i].y * kernel[i][index];
}
return result - samples[index].y;
}
void train_svr(svm_model* model) {
double alpha[num_samples];
memset(alpha, 0, sizeof(alpha));
double b = 0.0;
double error[num_samples];
memset(error, 0, sizeof(error));
int iterations = 0;
double alpha_diff = 0.0;
do {
alpha_diff = 0.0;
for (int i = 0; i < num_samples; i++) {
error[i] = calculate_error(i, model);
double old_alpha = alpha[i];
alpha[i] = fmin(fmax(alpha[i] + (samples[i].y - error[i]) / kernel[i][i], 0.0), 1.0);
alpha_diff += fabs(alpha[i] - old_alpha);
}
iterations++;
if (iterations >= MAX_ITERATIONS) {
printf("Maximum iterations reached. Exiting...\n");
exit(1);
}
} while (alpha_diff > TOLERANCE);
for (int i = 0; i < num_samples; i++) {
b += samples[i].y - error[i] - alpha[i] * kernel[i][i];
}
b /= num_samples;
model->b = b;
for (int i = 0; i < num_samples; i++) {
model->alpha += alpha[i] * samples[i].y;
}
}
int main(int argc, char* argv[]) {
if (argc < 2) {
printf("Usage: %s <data_file>\n", argv[0]);
exit(1);
}
FILE* fp = fopen(argv[1], "r");
if (!fp) {
printf("Failed to open file: %s\n", argv[1]);
exit(1);
}
char line[MAX_LINE_LENGTH];
int line_num = 0;
while (fgets(line, MAX_LINE_LENGTH, fp)) {
char* token = strtok(line, ",");
int feature_num = 0;
double* features = (double*) malloc(sizeof(double) * MAX_FEATURES);
while (token) {
if (feature_num == num_features) {
printf("Too many features in line %d. Exiting...\n", line_num);
exit(1);
}
features[feature_num++] = atof(token);
token = strtok(NULL, ",");
}
if (feature_num == 0) {
printf("Empty line %d. Exiting...\n", line_num);
exit(1);
} else if (feature_num == 1) {
printf("Only one feature in line %d. Exiting...\n", line_num);
exit(1);
}
samples[line_num].x = features;
samples[line_num].y = features[feature_num - 1];
num_features = feature_num - 1;
line_num++;
}
num_samples = line_num;
printf("Number of samples: %d\n", num_samples);
printf("Number of features: %d\n", num_features);
calculate_kernel();
svm_model model = {0.0, 0.0};
train_svr(&model);
printf("Trained model: alpha=%f, b=%f\n", model.alpha, model.b);
double test[MAX_FEATURES] = {0.5, 0.6, 0.7};
printf("Prediction: %f\n", predict(test, &model));
return 0;
}
```
这是一个简单的SVR实现,可以从数据文件中读取样本数据,计算并保存核矩阵,通过训练SVR模型来预测新的样本。代码中使用了高斯核函数,可以根据需要修改。需要注意的是,该实现中使用了简化版的SMO算法进行训练,不保证在所有情况下都能得到最优解。
阅读全文