#include "axi.h" #include "navier-stokes/centered.h" #include "two-phase.h" #include "log-conform.h" #include "curvature.h" #define RHO_r 0.001 #define MU_r 0.001 #define RE 5. #define FR 2.26 #define LEVEL 7 #define BETA 0.1 #define WI 1.0 scalar lambdav[], mupv[]; u.n[right] = neumann(0); p[right] = dirichlet(0); u.t[left] = dirichlet(0); tau_qq[left] = dirichlet(0); f[left] = 0.; int main() { size (2.6); init_grid (1 << LEVEL); rho1 = 1.; rho2 = RHO_r; mu1 = BETA/RE; mu2 = MU_r/RE; mup = mupv; lambda = lambdav; DT = 2e-3; run(); } event init (t = 0) { scalar s = tau_p.x.x; s[left] = dirichlet(0.); fraction (f, - sq(x - 2.) - sq(y) + sq(0.5)); foreach() u.x[] = - f[]; } event acceleration (i++) { face vector av = a; foreach_face(x) av.x[] -= 1./sq(FR); } event properties (i++) { foreach() { mupv[] = (1. - BETA)clamp(f[],0,1)/RE; lambdav[] = WIclamp(f[],0,1); } } #if TREE event adapt (i++) { adapt_wavelet ({f, u.x, u.y}, (double[]){1e-2, 5e-3, 5e-3}, maxlevel = LEVEL, minlevel = LEVEL - 2); } #endif event logfile (i += 20; t <= 5) { scalar pos[]; position (f, pos, {0,1}); fprintf (stderr, "%g %g\n", t, 2.*statsf(pos).max); } #include "view.h" event viewing (i += 10) { view (width = 400, height = 400, fov = 20, ty = -0.5, quat = {0, 0, -0.707, 0.707}); clear(); draw_vof ("f", lw = 2); squares ("u.x", linear = true); box (notics = true); mirror ({0,1}) { draw_vof ("f", lw = 2); squares ("u.y", linear = true); box (notics = true); } save ("movie.mp4"); #if 0 static FILE * fp = popen ("bppm","w"); save (fp = fp); #endif }

时间: 2024-04-17 10:23:51 浏览: 139
根据您提供的代码,可以看出您正在进行两相流的模拟。这段代码使用了Basilisk库,并设置了流体和边界条件。 关于您提到的错误:“error: incompatible types when assigning to type ‘scalar’ from type ‘double’”,这是因为在`event init(t = 0)`中,您尝试将`dirichlet(0.)`赋值给`s[left]`,但是`s`是一个标量变量,而`dirichlet(0.)`返回的是一个双精度浮点数(`double`)。 要解决这个错误,您可以使用合适的边界条件宏来设置`s[left]`。如果您想将左边界`s[left]`设置为Dirichlet边界条件为0.0,您可以使用`boundary({s})`函数来设置边界条件。例如,将以下代码行: ```c s[left] = dirichlet(0.); ``` 替换为: ```c boundary({s}); ``` 这将根据`s`的类型自动为左边界设置合适的边界条件。 请注意,根据您的需求,您可能需要根据实际情况调整其他参数和边界条件。这个更新后的代码示例仅仅解决了类型不匹配的错误。
相关问题

请从小白的角度给这段代码加上详细的注释 #include "./fir.h" coef_t c[N]; void fir(data_t *y, data_t x) { #pragma HLS ARRAY_PARTITION variable=c complete dim=0 static data_t shift_reg[N]; #pragma HLS ARRAY_PARTITION variable=shift_reg complete dim=0 acc_t acc; int i; acc = 0; #pragma HLS PIPELINE II=1 for (i = N - 1; i >= 0; i--) { if (i == 0) { acc += x * c[0]; shift_reg[0] = x; } else { shift_reg[i] = shift_reg[i - 1]; acc += shift_reg[i] * c[i]; } } *y = acc; } void fir_wrap(data_t *y, data_t *x, int len, coef_t *coef) { #pragma HLS INTERFACE m_axi port=coef offset=slave depth=99 #pragma HLS INTERFACE m_axi port=x offset=slave depth=100 #pragma HLS INTERFACE m_axi port=y offset=slave depth=100 #pragma HLS INTERFACE s_axilite port=len bundle=CTRL #pragma HLS INTERFACE s_axilite port=return bundle=CTRL data_t res; for (int i =0; i < N; i++) { #pragma HLS PIPELINE II=1 c[i] = *coef++; } for (int i = 0; i < len; i++) { #pragma HLS PIPELINE II=1 fir(&res,*x++); *y = res; y++; } }

这段代码是一个用于实现FIR滤波器的函数。下面是对每个部分的详细注释: ```cpp #include "./fir.h" ``` 这行代码包含了一个名为"fir.h"的头文件,用于定义FIR滤波器所需的数据类型和常量。 ```cpp coef_t c[N]; ``` 这行代码定义了一个长度为N的系数数组c,用于存储滤波器的系数。 ```cpp void fir(data_t *y, data_t x) ``` 这行代码定义了一个名为fir的函数,它接受一个指向输出结果y的指针和一个输入x作为参数。 ```cpp #pragma HLS ARRAY_PARTITION variable=c complete dim=0 ``` 这行代码使用HLS指令,将系数数组c按照完全分区的方式进行分区。 ```cpp static data_t shift_reg[N]; ``` 这行代码定义了一个静态的长度为N的移位寄存器数组shift_reg,用于存储滤波器的历史输入数据。 ```cpp #pragma HLS ARRAY_PARTITION variable=shift_reg complete dim=0 ``` 这行代码使用HLS指令,将移位寄存器数组shift_reg按照完全分区的方式进行分区。 ```cpp acc_t acc; int i; acc = 0; ``` 这行代码定义了一个累加器acc和一个整型变量i,并将累加器初始化为0。 ```cpp #pragma HLS PIPELINE II=1 ``` 这行代码使用HLS指令,指示编译器将以下for循环展开为流水线,每个步骤的间隔为1个时钟周期。 ```cpp for (i = N - 1; i >= 0; i--) { if (i == 0) { acc += x * c[0]; shift_reg[0] = x; } else { shift_reg[i] = shift_reg[i - 1]; acc += shift_reg[i] * c[i]; } } ``` 这段代码是FIR滤波器的核心算法部分。它使用一个for循环遍历滤波器的系数数组和移位寄存器数组,根据当前的系数和移位寄存器的值计算累加器的值,并更新移位寄存器中的值。 ```cpp *y = acc; ``` 这行代码将累加器的值赋给输出结果y。 ```cpp void fir_wrap(data_t *y, data_t *x, int len, coef_t *coef) ``` 这行代码定义了一个名为fir_wrap的函数,它接受指向输出结果y、输入x、输入长度len和系数数组coef的指针作为参数。 ```cpp #pragma HLS INTERFACE m_axi port=coef offset=slave depth=99 #pragma HLS INTERFACE m_axi port=x offset=slave depth=100 #pragma HLS INTERFACE m_axi port=y offset=slave depth=100 #pragma HLS INTERFACE s_axilite port=len bundle=CTRL #pragma HLS INTERFACE s_axilite port=return bundle=CTRL ``` 这段代码使用HLS指令,定义了函数fir_wrap的接口。它指定了系数数组coef、输入数组x和输出数组y的访问方式和传输深度,以及输入长度len和返回值的传输方式。 ```cpp data_t res; for (int i =0; i < N; i++) { #pragma HLS PIPELINE II=1 c[i] = *coef++; } ``` 这段代码使用一个for循环将系数数组coef的值赋给数组c。在循环中使用HLS指令,将赋值操作展开为流水线,每个步骤的间隔为1个时钟周期。 ```cpp for (int i = 0; i < len; i++) { #pragma HLS PIPELINE II=1 fir(&res,*x++); *y = res; y++; } ``` 这段代码使用一个for循环对输入数组x中的每个元素进行滤波操作,并将结果存储在输出数组y中。在循环中使用HLS指令,将滤波操作展开为流水线,每个步骤的间隔为1个时钟周期。
阅读全文

相关推荐

最新推荐

recommend-type

ug585-Zynq-7000-TRM.pdf

Zynq-7000 SoC包含预集成的IP核,如AXI总线结构,用于PS与PL之间的高效通信。此外,还有硬核的外设,如以太网MAC、USB控制器和PCI Express控制器等,这些都简化了系统设计和集成。 **系统管理**: 该手册还会涵盖...
recommend-type

425_基于Camera Link HD-SDI的双光融合处理平台V20200701(2).docx

3) AXI总线的VDMA图像传输,揭示了DMA传输机制和内存管理;4) ARM的LWIP网络传输实验,深入探讨了UDP/TCP、IP协议的网络数据收发;5) 双光视频网络PC传输实验,讲解了上位机如何接收和显示网络图像数据。 硬件部分...
recommend-type

amba_axi_protocol.pdf

AXI(Advanced eXtensible Interface)总线协议是由ARM公司开发的一种高性能、低延迟的片上互连规范,广泛应用于数字系统设计中,尤其是在SoC(System on Chip)设计中起到关键作用。AXI协议提供了数据传输的标准化...
recommend-type

Xilinx_ZYNQ7020_自定义IP开发文档.docx

在Xilinx Zynq 7020 SoC平台进行自定义IP开发,开发者需要理解嵌入式系统的基本架构和AXI总线协议。Zynq芯片由两个主要部分组成:处理系统(PS)和 programmable logic (PL)。在这个案例中,重点是PL部分,即FPGA区域...
recommend-type

pcie_test_suite_svt_uvm_user_guide.pdf

《PCIe测试套件SVT-UVM用户指南》是Synopsys公司发布的一份关于验证连续体(Verification Continuum)的VC Verification IP PCIe测试套件的用户手册,该手册适用于UVM(Universal Verification Methodology)环境。...
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"