使用终端A上的扩展IO口PA3连接DS18B20温度传感器。 每当按键ASW4按下,通过串口上报温度数据一次,温度发送格式: "C:25.26\r\n" 串口发送格式(字符串) 备注: C为大写字母,温度值结果保留小数点后2位有效数字。 串口发送的字符串应包含换行、回车符号:"\r\n"。 通过USART3的USB转串口功能实现,波特率设置为9600 bps。

时间: 2024-03-17 20:39:37 浏览: 55
这是一个需要编写嵌入式程序的问题,需要使用编程语言和相应的开发环境来完成。以下是一个基于STM32F4开发板的C语言代码示例,实现了该功能: ```c #include "stm32f4xx.h" #include <stdio.h> #include <string.h> #define DS18B20_PIN GPIO_Pin_3 #define DS18B20_GPIO GPIOA void delay_us(uint32_t us) { for (uint32_t i = 0; i < us * 8; i++); } void ds18b20_init(void) { RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = DS18B20_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_OD; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(DS18B20_GPIO, &GPIO_InitStructure); GPIO_SetBits(DS18B20_GPIO, DS18B20_PIN); } void ds18b20_write_bit(uint8_t bit) { GPIO_ResetBits(DS18B20_GPIO, DS18B20_PIN); delay_us(2); if (bit) { GPIO_SetBits(DS18B20_GPIO, DS18B20_PIN); delay_us(60); } else { delay_us(60); GPIO_SetBits(DS18B20_GPIO, DS18B20_PIN); } delay_us(2); } void ds18b20_write_byte(uint8_t byte) { for (uint8_t i = 0; i < 8; i++) { ds18b20_write_bit(byte & 0x01); byte >>= 1; } } uint8_t ds18b20_read_bit(void) { GPIO_ResetBits(DS18B20_GPIO, DS18B20_PIN); delay_us(2); GPIO_SetBits(DS18B20_GPIO, DS18B20_PIN); delay_us(12); GPIO_PinState state = GPIO_ReadInputDataBit(DS18B20_GPIO, DS18B20_PIN); delay_us(50); return state; } uint8_t ds18b20_read_byte(void) { uint8_t byte = 0; for (uint8_t i = 0; i < 8; i++) { byte |= ds18b20_read_bit() << i; } return byte; } float ds18b20_read_temperature(void) { ds18b20_init(); ds18b20_write_byte(0xCC); ds18b20_write_byte(0x44); while (!ds18b20_read_bit()); ds18b20_init(); ds18b20_write_byte(0xCC); ds18b20_write_byte(0xBE); uint16_t raw = ds18b20_read_byte() | (ds18b20_read_byte() << 8); int16_t temp = (int16_t)raw / 16; float dec = (float)(raw & 0x0F) / 16; float temperature = (float)temp + dec; return temperature; } void usart3_init(uint32_t baudrate) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE); GPIO_PinAFConfig(GPIOB, GPIO_PinSource10, GPIO_AF_USART3); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOB, &GPIO_InitStructure); USART_InitTypeDef USART_InitStructure; USART_InitStructure.USART_BaudRate = baudrate; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Tx; USART_Init(USART3, &USART_InitStructure); USART_Cmd(USART3, ENABLE); } void usart3_send_string(char* str) { while (*str) { USART_SendData(USART3, *str++); while (USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET); } } int main(void) { usart3_init(9600); while (1) { if (GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_1) == RESET) { float temperature = ds18b20_read_temperature(); char str[16]; sprintf(str, "C:%.2f\r\n", temperature); usart3_send_string(str); while (GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_1) == RESET); } } } ``` 该程序首先初始化了DS18B20温度传感器和USART3串口。在主循环中,程序不断读取ASW4按键状态,如果按键被按下,则读取温度传感器的温度值,并通过USART3串口发送给上位机。发送的字符串格式为"C:25.26\r\n",其中温度值使用sprintf函数转换为字符串格式。发送完成后,程序等待ASW4按键释放。
阅读全文

相关推荐

最新推荐

recommend-type

DS18B20 温度传感器自动火灾报警论文

综上所述,这篇论文详细阐述了如何使用51单片机、DS18B20温度传感器、DS1302时钟芯片和1602 LCD显示屏设计一个自动火灾报警器。通过集成这些组件,系统能够实时监测温度,当温度超出安全范围时,触发报警机制,为...
recommend-type

一种基于DS18B20的温度采集系统设计

在数字式温度传感器的内部一般包含有温度传感器、接口电路、存储器(或寄存器)、信号处理器和A/D转换器。与传统的模拟温度传感器相比,数字式温度传感器在器件微小化、抗干扰能力、可靠性、分辨率以及精度方面都具有...
recommend-type

DS18B20数据手册-中文版(带目录)

DS18B20 数据手册中文版(带目录) 本文档详细介绍了 DS18B20 数字温度传感器的技术规格和应用场景。DS18B20 是一种数字温度传感器,能够提供 9-Bit 到 12-Bit 的摄氏温度测量精度和一个用户可编程的非易失性且具有...
recommend-type

51单片机DS18B20测量温度实验

3. DS18B20的通信协议:DS18B20采用1-Wire总线协议,使用一根数据线实现数据的双向传输。该协议定义了几种信号的时序,包括初始化时序、读时序和写时序。 4. DS18B20的使用方法:由于DS18B20采用的是1-Wire总线协议...
recommend-type

基于AT89C51和DS18B20的最简温度测量系统

本文探讨了基于AT89C51单片机和DS18B20数字温度传感器构建的最简温度测量系统。这种系统具有简洁的结构和强大的抗干扰能力,特别适用于恶劣环境下的温度测量任务。 DS18B20是DALLAS公司生产的一种创新的可编程温度...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。