go 二维map

时间: 2023-06-28 07:04:14 浏览: 68
二维 map 在 Go 中的定义如下: ```go var m map[int]map[int]int ``` 其中,外层的 `map[int]` 表示键为 int 类型,值为内层的 map;内层的 `map[int]int` 表示键为 int 类型,值为 int 类型。 例如,我们可以创建一个 3x3 的二维 map,并给其中的元素赋值: ```go m := make(map[int]map[int]int) for i := 0; i < 3; i++ { m[i] = make(map[int]int) for j := 0; j < 3; j++ { m[i][j] = i*j } } ``` 这样,我们就创建了一个二维 map,其键为 `(i, j)`,值为 `i*j`,如下所示: ``` (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) ``` 我们可以通过以下方式访问其中的元素: ```go fmt.Println(m[1][2]) // 输出 2 ```
相关问题

go语言如何使用map进行维度去重

使用map进行维度去重,可以按照以下步骤进行: 1. 定义一个map变量,用于存储去重后的结果。 2. 遍历需要去重的数据集,对于每个数据,将其作为map的key,value可以随意指定,这里可以使用空结构体struct{}。 3. 如果数据已经存在于map中,说明该数据已经出现过,可以跳过;如果不存在,则将该数据加入map中。 4. 最终,map中存储的所有key值即为去重后的结果。 下面是使用go语言进行维度去重的示例代码: ```go func unique(data [][]int) [][]int { result := make(map[string]struct{}) for _, v := range data { key := fmt.Sprint(v) result[key] = struct{}{} } ret := make([][]int, 0, len(result)) for k := range result { s := strings.Trim(k, "[]") arr := strings.Split(s, " ") temp := make([]int, 0, len(arr)) for _, v := range arr { num, _ := strconv.Atoi(v) temp = append(temp, num) } ret = append(ret, temp) } return ret } ``` 在这个示例中,我们将二维数组作为输入数据,使用map进行去重,并返回一个二维数组类型的结果。注意,在将数组转化为字符串key值的时候,需要注意去掉中括号和空格,同时在返回结果的时候需要将字符串再转化为数组。

基于栅格地图的二维路径规划rrt算法matlab代码

### 回答1: 非常感谢您的提问!以下是我为您编写的基于栅格地图的二维路径规划算法(RRT算法)的Matlab代码,希望对您有所帮助: ```matlab % 二维路径规划算法(RRT算法)的Matlab代码 % 假设地图是一个50x50的栅格地图,其中1表示障碍物,0表示自由空间 % 起点坐标是(1,1),终点坐标是(50,50) % 栅格地图存储在二维矩阵map中 clear all; clc; % 初始化地图 map = zeros(50,50); % 50x50的空白地图 map(10:15, 10:15) = 1; % 障碍物 map(20:25, 20:25) = 1; % 障碍物 map(35:40, 35:40) = 1; % 障碍物 % 起点和终点 start_pos = [1,1]; end_pos = [50,50]; % RRT算法参数 max_iter = 5000; % 最大迭代次数 step_size = 2; % 步长 % 初始化RRT树 tree(1).pos = start_pos; % 根节点为起点 tree(1).parent = 0; % 根节点没有父节点 % 开始迭代 for i = 1:max_iter % 生成一个随机点 if rand < 0.1 % 有10%的概率选取终点 rand_pos = end_pos; else % 90%的概率在地图内随机选取一个点 rand_pos = [randi(50), randi(50)]; end % 找到RRT树上距离随机点最近的节点 nearest_node = 1; nearest_dist = norm(tree(nearest_node).pos - rand_pos); for j = 2:length(tree) dist_to_rand = norm(tree(j).pos - rand_pos); if dist_to_rand < nearest_dist nearest_node = j; nearest_dist = dist_to_rand; end end % 在距离随机点最近的节点和随机点之间生成一个新节点 new_pos = tree(nearest_node).pos + step_size * (rand_pos - tree(nearest_node).pos) / nearest_dist; if is_free(new_pos, map) % 如果新节点在自由空间内 new_node.parent = nearest_node; new_node.pos = new_pos; tree = [tree, new_node]; % 加入RRT树 end % 如果新节点接近终点,则检查是否有一条可行路径连接起点和终点 if norm(new_node.pos - end_pos) < step_size % 从新节点追溯到起点,得到一条路径 path = [new_node.pos]; node = length(tree); while tree(node).parent ~= 0 path = [tree(node).pos, ### 回答2: 在基于栅格地图的二维路径规划中使用RRT算法,可以采用以下步骤: 1. 初始化地图信息:根据实际场景,将地图表示为栅格地图,其中障碍物由栅格表示,通过设置栅格的值来表示障碍物的存在。 2. 设置起点和终点:在栅格地图中选择起点和终点。 3. 定义RRT树:RRT树由节点和边组成,每个节点表示一个栅格点,边表示两个栅格点之间的连线。树的根节点为起点。 4. 进行路径搜索:在RRT树中循环执行以下步骤直至找到路径或达到最大迭代次数: a. 随机选择一个目标点,可能是终点,也可能是栅格地图中的随机点。 b. 在RRT树中查找最近的节点,以此作为起始点。 c. 从起始点到目标点进行插值,得到新的栅格点,并检查该点是否碰撞,若碰撞则重新选择目标点。 d. 将新的栅格点添加到RRT树中。 e. 检查新点是否接近终点,若是则到达终点附近,终止循环。 5. 连接起点到终点:找到最接近终点的节点,从终点开始逐步连接找到的节点直至起点,形成最终的路径。 6. 根据路径生成控制指令:将路径中的栅格点转换为实际控制指令,例如将栅格点转换为机器人坐标系下的坐标,然后进行路径跟踪控制。 以下是一个简单的RRT算法的Matlab代码示例: ```matlab function path = RRT(gridMap, start, goal, maxIterations) % 栅格地图的大小 [rows, cols] = size(gridMap); % 定义RRT树 tree = struct('node', start, 'parent', []); for i = 1:maxIterations % 随机选择目标点 if rand < 0.5 target = goal; else target = [randi(cols), randi(rows)]; end % 寻找最近的节点 distances = arrayfun(@(x) norm(x.node - target), tree); [minDist, nearestNodeIdx] = min(distances); nearestNode = tree(nearestNodeIdx).node; % 插值得到新的节点 step = target - nearestNode; if norm(step) > 1 step = step / norm(step); end newNode = nearestNode + step; % 检查新节点是否碰撞 if gridMap(round(newNode(2)), round(newNode(1))) == 1 continue; % 重新选择目标点 end % 添加新节点到RRT树 newNodeIdx = numel(tree) + 1; tree(newNodeIdx).node = newNode; tree(newNodeIdx).parent = nearestNodeIdx; % 检查是否到达终点附近 if norm(newNode - goal) < 5 break; % 到达终点附近,终止循环 end end % 路径搜索完成,连接起点到终点 currentNodeIdx = newNodeIdx; path = [tree(currentNodeIdx).node]; while ~isempty(tree(currentNodeIdx).parent) currentNodeIdx = tree(currentNodeIdx).parent; path = [tree(currentNodeIdx).node; path]; end end ``` 此代码表示了一个简单的RRT算法的基本实现,可以根据具体需求进行优化和改进。注意,代码中的gridMap是一个二维数组,1表示障碍物,0表示可行区域。函数的参数start和goal分别表示起点和终点的坐标。maxIterations表示最大迭代次数。函数返回的path是包含起点到终点的路径点坐标的数组。 ### 回答3: 栅格地图是一种常用的表示环境的方式,其中每个网格单元代表一个离散的空间点,并根据环境中的障碍物进行标示。基于栅格地图的二维路径规划算法,可以用RRT(Rapidly-Exploring Random Tree)算法来实现。 以下是MATLAB代码的实现: ```MATLAB clear; % 设置环境参数 map = zeros(10, 10); % 创建一个10x10的栅格地图 map(3:6, 3:6) = 1; % 栅格地图中的障碍物,1代表障碍物 start = [1, 1]; % 起点坐标 goal = [10, 10]; % 终点坐标 % 设置RRT算法参数 max_iters = 500; % RRT算法的最大迭代次数 step_size = 1; % 每次扩展的步长 % 初始化RRT tree.nodes(1).coord = start; tree.nodes(1).parent = 0; for i = 1:max_iters % 生成一个随机点 rand_point = [randi(10), randi(10)]; % 在栅格地图中找到离随机点最近的节点 distances = sqrt((rand_point(1)-[tree.nodes.coord(1,:)]).^2 + (rand_point(2)-[tree.nodes.coord(2,:)]).^2); [~, nearest_node] = min(distances); % 扩展新的节点 direction = (rand_point - tree.nodes(nearest_node).coord) / norm(rand_point - tree.nodes(nearest_node).coord); new_coord = tree.nodes(nearest_node).coord + step_size * direction; % 如果新节点不与障碍物相交,则添加到树中 if map(new_coord(1), new_coord(2)) == 0 new_node.coord = new_coord; new_node.parent = nearest_node; tree.nodes = [tree.nodes, new_node]; % 如果新节点接近目标,则把目标节点添加到树中,并结束算法 if norm(new_coord - goal) < step_size goal_node.coord = goal; goal_node.parent = numel(tree.nodes); tree.nodes = [tree.nodes, goal_node]; break; end end end % 从终点到起点回溯路径 path = []; current_node = numel(tree.nodes); while current_node ~= 1 path = [path, tree.nodes(current_node).coord]; current_node = tree.nodes(current_node).parent; end path = [path, tree.nodes(1).coord]; % 可视化路径和栅格地图 imagesc(map); hold on; plot(path(1,:), path(2,:), 'r', 'LineWidth', 2); scatter(start(1), start(2), 'ro', 'filled'); scatter(goal(1), goal(2), 'go', 'filled'); axis equal; ``` 这段MATLAB代码使用RRT算法在给定的栅格地图中进行路径规划,并将路径可视化。路径规划过程中,从起点开始逐步扩展树,直到找到终点为止。最后,将找到的路径绘制在栅格地图上以进行可视化。

相关推荐

最新推荐

recommend-type

java 遍历Map及Map转化为二维数组的实例

在 Java 编程语言中,遍历 Map 及将其转化为二维数组是一种常见的操作。本文将详细介绍如何使用 Java 遍历 Map 及将其转化为二维数组,并提供实例代码以供参考。 1. 使用 Map.keySet() 遍历 Map 及将其转化为二维...
recommend-type

Lua中使用二维数组实例

在Lua编程语言中,虽然没有内置的二维数组概念,但开发者可以使用嵌套数组的方式来实现二维数组的功能。这种实现方式非常灵活,适用于处理表格数据、矩阵运算等多种场景。本篇文章将深入探讨如何在Lua中创建和操作二...
recommend-type

C#实现对二维数组排序的方法

在C#编程中,二维数组是一种常见的数据结构,用于存储多列或多行的数据。当处理这类数据时,可能需要对数组中的元素进行排序,以便于分析或展示。本篇文章将详细探讨如何在C#中实现对二维数组的排序,特别关注如何...
recommend-type

java实现二维数组转json的方法示例

在Java编程中,将二维数组转换为JSON格式的数据是常见的数据处理需求,特别是在处理Web服务或数据交换时。本文将详细讲解如何使用Java实现这一功能,以及涉及的相关操作技巧。 首先,我们需要理解二维数组和JSON的...
recommend-type

python中字符串变二维数组的实例讲解

在Python编程中,有时我们需要将字符串转换为二维数组,特别是在处理数据输入或解析文本文件时。本篇文章将详细讲解如何实现这一过程,并提供一个具体的实例。 首先,我们要明确字符串的结构。假设我们有一个字符串...
recommend-type

JDK 17 Linux版本压缩包解压与安装指南

资源摘要信息:"JDK 17 是 Oracle 公司推出的 Java 开发工具包的第17个主要版本,它包括了Java语言和虚拟机规范的更新,以及一系列新的开发工具。这个版本是为了满足开发者对于高性能、高安全性和新特性的需求。'jdk-17_linux-x64_bin.deb.zip' 是该JDK版本的Linux 64位操作系统下的二进制文件格式,通常用于Debian或Ubuntu这样的基于Debian的Linux发行版。该文件是一个压缩包,包含了'jdk-17_linux-x64_bin.deb',这是JDK的安装包,按照Debian包管理系统的格式进行打包。通过安装这个包,用户可以在Linux系统上安装并使用JDK 17进行Java应用的开发。" ### JDK 17 特性概述 - **新特性**:JDK 17 引入了多个新特性,包括模式匹配的记录(record)、switch 表达式的改进、带有文本块的字符串处理增强等。这些新特性旨在提升开发效率和代码的可读性。 - **性能提升**:JDK 17 在性能上也有所提升,包括对即时编译器、垃圾收集器等方面的优化。 - **安全加强**:安全性一直是Java的强项,JDK 17 继续增强了安全特性,包括更多的加密算法支持和安全漏洞的修复。 - **模块化**:JDK 17 继续推动Java平台的模块化发展,模块化有助于减少Java应用程序的总体大小,并提高其安全性。 - **长期支持(LTS)**:JDK 17 是一个长期支持版本,意味着它将获得官方更长时间的技术支持和补丁更新,这对于企业级应用开发至关重要。 ### JDK 安装与使用 - **安装过程**:对于Debian或Ubuntu系统,用户可以通过下载 'jdk-17_linux-x64_bin.deb.zip' 压缩包,解压后得到 'jdk-17_linux-x64_bin.deb' 安装包。用户需要以管理员权限运行命令 `sudo dpkg -i jdk-17_linux-x64_bin.deb` 来安装JDK。 - **环境配置**:安装完成后,需要将JDK的安装路径添加到系统的环境变量中,以便在任何位置调用Java编译器和运行时环境。 - **版本管理**:为了能够管理和切换不同版本的Java,用户可能会使用如jEnv或SDKMAN!等工具来帮助切换Java版本。 ### Linux 系统中的 JDK 管理 - **包管理器**:在Linux系统中,包管理器如apt、yum、dnf等可以用来安装、更新和管理软件包,包括JDK。对于Java开发者而言,了解并熟悉这些包管理器是非常必要的。 - **Java 平台模块系统**:JDK 17 以模块化的方式组织,这意味着Java平台本身以及Java应用程序都可以被构建为一组模块。这有助于管理大型系统,使得只加载运行程序所需的模块成为可能。 ### JDK 版本选择与维护 - **版本选择**:在选择JDK版本时,除了考虑新特性、性能和安全性的需求外,企业级用户还需要考虑到JDK的版本更新周期和企业的维护策略。 - **维护策略**:对于JDK的维护,企业通常会有一个周期性的评估和升级计划,确保使用的是最新的安全补丁和性能改进。 ### JDK 17 的未来发展 - **后续版本的期待**:虽然JDK 17是一个 LTS 版本,但它不是Java版本更新的终点。Oracle 会继续推出后续版本,每六个月发布一个更新版本,每三年发布一个LTS版本。开发者需要关注未来版本中的新特性,以便适时升级开发环境。 通过以上知识点的总结,我们可以了解到JDK 17对于Java开发者的重要性以及如何在Linux系统中进行安装和使用。随着企业对于Java应用性能和安全性的要求不断提高,正确安装和维护JDK变得至关重要。同时,理解JDK的版本更新和维护策略,能够帮助开发者更好地适应和利用Java平台的持续发展。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

SQLAlchemy表级约束与触发器:数据库设计与完整性维护指南(专业性+推荐词汇)

![SQLAlchemy表级约束与触发器:数据库设计与完整性维护指南(专业性+推荐词汇)](http://www.commandprompt.com/media/images/image_ZU91fxs.width-1200.png) # 1. SQLAlchemy简介与安装 ## 简介 SQLAlchemy 是 Python 中一个强大的 SQL 工具包和对象关系映射(ORM)框架。它旨在提供数据库交互的高效、简洁和可扩展的方式。SQLAlchemy 拥有灵活的底层 API,同时提供了 ORM 层,使得开发者可以使用面向对象的方式来构建和操作数据库。 ## 安装 要开始使用 SQLA
recommend-type

jupyter_contrib_nbextensions_master下载后

Jupyter Contrib NbExtensions是一个GitHub存储库,它包含了许多可以增强Jupyter Notebook用户体验的扩展插件。当你从`master`分支下载`jupyter_contrib_nbextensions-master`文件后,你需要做以下几个步骤来安装和启用这些扩展: 1. **克隆仓库**: 先在本地环境中使用Git命令行工具(如Windows的Git Bash或Mac/Linux终端)克隆该仓库到一个合适的目录,比如: ``` git clone https://github.com/jupyter-contrib/jupyter
recommend-type

C++/Qt飞行模拟器教员控制台系统源码发布

资源摘要信息:"该资源是基于C++与Qt框架构建的飞行模拟器教员控制台系统的源码文件,可用于个人课程设计、毕业设计等多个应用场景。项目代码经过测试并确保运行成功,平均答辩评审分数为96分,具有较高的参考价值。项目适合计算机专业人员如计科、人工智能、通信工程、自动化和电子信息等相关专业的在校学生、老师或企业员工学习使用。此外,即使对编程有一定基础的人士,也可以在此代码基础上进行修改,实现新的功能或将其作为毕设、课设、作业等项目的参考。用户在下载使用时应先阅读README.md文件(如果存在),并请注意该项目仅作为学习参考,严禁用于商业用途。" 由于文件名"ori_code_vip"没有详细说明文件内容,我们不能直接从中提取出具体知识点。不过,我们可以从标题和描述中挖掘出以下知识点: 知识点详细说明: 1. C++编程语言: C++是一种通用编程语言,广泛用于软件开发领域。它支持多范式编程,包括面向对象、泛型和过程式编程。C++在系统/应用软件开发、游戏开发、实时物理模拟等方面有着广泛的应用。飞行模拟器教员控制台系统作为项目实现了一个复杂的系统,C++提供的强大功能和性能正是解决此类问题的利器。 2. Qt框架: Qt是一个跨平台的C++图形用户界面应用程序开发框架。它为开发者提供了丰富的工具和类库,用于开发具有专业外观的用户界面。Qt支持包括窗体、控件、数据处理、网络通信、多线程等功能。该框架还包含用于2D/3D图形、动画、数据库集成和国际化等高级功能的模块。利用Qt框架,开发者可以高效地构建跨平台的应用程序,如本项目中的飞行模拟器教员控制台系统。 3. 飞行模拟器系统: 飞行模拟器是一种模拟航空器(如飞机)操作的系统,广泛用于飞行员培训和飞行模拟。飞行模拟器教员控制台系统通常包括多个模块,例如飞行动力学模拟、环境模拟、虚拟仪表板、通信和导航设备模拟等。在本项目中,控制台系统允许教员控制飞行模拟器的运行,如设置天气条件、选择飞行任务、监控学员操作等。 4. 软件开发流程: 软件开发流程是将软件从概念设计到最终交付的过程。这通常包括需求分析、设计、编码、测试和维护阶段。本项目的开发过程涵盖了这些步骤,包括编写可运行的代码,并进行必要的测试以确保功能正常。这为学习软件开发流程提供了很好的实践案例。 5. 项目测试与维护: 软件开发中的测试和维护阶段是确保软件质量的关键。测试包括单元测试、集成测试和系统测试,以确保软件的每个部分都能正常工作。维护是指在软件发布后,对其进行更新和改进,以修正错误、提高性能或适应新的需求。该项目提供了测试成功的代码,为学习软件测试与维护提供了实践材料。 6. 教育与学习资源: 该资源可以作为计算机相关专业学生、教师和从业人员的教育和学习资源。对于学习进阶的初学者来说,它提供了从课程设计到毕业设计的完整项目实现参考。此外,具有一定基础的用户也可以修改项目代码,来实现个性化功能或作为其他项目的起点。 7. 许可与版权: 在使用该项目时,用户需要遵循相应的许可协议。该资源明确提示,仅供学习参考,不得用于商业用途。在软件开发和使用中,了解和遵守版权法规是非常重要的,这关系到知识产权的保护和法律风险的规避。 该资源提供了一个完整的学习案例,从项目设计、编码实现到测试验证,涵盖了软件开发的整个过程。它不仅是一个很好的学习资源,同时也是软件开发实践的一个示例。