用Python原生代码复现多元逻辑回
时间: 2023-11-05 13:41:56 浏览: 80
归(Multinomial Logistic Regression)是一种逻辑回归模型的扩展,用于处理多个离散类别的分类问题。下面是使用Python原生代码实现多元逻辑回归的步骤:
1. 导入所需的库:
```python
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```
2. 准备数据集,包括特征矩阵 X 和目标变量 y。确保特征矩阵已经进行了特征缩放操作。
```python
# 假设已经准备好了特征矩阵 X 和目标变量 y
```
3. 将数据集分为训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
4. 进行特征缩放:
```python
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```
5. 定义 softmax 函数,用于计算类别的概率分布:
```python
def softmax(z):
exp_scores = np.exp(z)
return exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
```
6. 定义损失函数(交叉熵损失函数):
```python
def calculate_loss(X, y, W):
num_samples = len(X)
scores = np.dot(X, W)
阅读全文