random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed)
时间: 2024-05-17 09:18:15 浏览: 155
torch.cuda.is_available()返回False解决方案
5星 · 资源好评率100%
这段代码用于设置随机数生成器的种子,从而让实验可复现。它首先使用args.seed来设置Python中的random模块和NumPy模块的随机数生成器的种子,然后使用args.seed来设置PyTorch中的随机数生成器的种子。
最后,如果args.cuda为True,则使用args.seed来设置PyTorch中的CUDA随机数生成器的种子,从而确保在GPU上运行代码时也能获得可复现的结果。
这些步骤是非常重要的,因为在机器学习中,随机数经常被用来初始化模型参数、打乱数据集、生成噪声等等。如果没有设置种子,那么每次运行代码时得到的结果可能会不同,导致实验的结果不可复现。因此,设置种子是保证实验结果可复现的重要步骤。
阅读全文