tensorflow DRQN代码

时间: 2023-08-31 16:12:46 浏览: 48
以下是使用TensorFlow实现DRQN(Deep Recurrent Q-Network)的示例代码: ```python import tensorflow as tf import numpy as np class DRQN: def __init__(self, state_dim, action_dim, hidden_dim, batch_size, learning_rate, memory_size, max_steps): self.state_dim = state_dim self.action_dim = action_dim self.hidden_dim = hidden_dim self.batch_size = batch_size self.learning_rate = learning_rate self.memory_size = memory_size self.max_steps = max_steps self.replay_memory = [] self.build_model() self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) def build_model(self): self.state_input = tf.placeholder(tf.float32, [None, self.max_steps, self.state_dim]) self.action_input = tf.placeholder(tf.int32, [None]) self.q_target = tf.placeholder(tf.float32, [None]) cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=self.hidden_dim) outputs, states = tf.nn.dynamic_rnn(cell, self.state_input, dtype=tf.float32) output = outputs[:, -1, :] w1 = tf.Variable(tf.random_normal([self.hidden_dim, self.action_dim])) b1 = tf.Variable(tf.zeros([self.action_dim])) self.q_value = tf.matmul(output, w1) + b1 self.predict_action = tf.argmax(self.q_value, axis=1) action_one_hot = tf.one_hot(self.action_input, self.action_dim) q_value_action = tf.reduce_sum(tf.multiply(self.q_value, action_one_hot), axis=1) self.loss = tf.reduce_mean(tf.square(self.q_target - q_value_action)) self.optimizer = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss) def store_experience(self, state, action, reward, next_state, done): self.replay_memory.append((state, action, reward, next_state, done)) if len(self.replay_memory) > self.memory_size: self.replay_memory.pop(0) def choose_action(self, state): if np.random.uniform() < 0.1: return np.random.choice(self.action_dim) else: return self.sess.run(self.predict_action, feed_dict={self.state_input: [state]})[0] def learn(self): if len(self.replay_memory) < self.batch_size: return samples = np.random.choice(len(self.replay_memory), self.batch_size, replace=False) states = np.zeros([self.batch_size, self.max_steps, self.state_dim]) actions = np.zeros([self.batch_size]) rewards = np.zeros([self.batch_size]) next_states = np.zeros([self.batch_size, self.max_steps, self.state_dim]) dones = np.zeros([self.batch_size]) for i, sample in enumerate(samples): state, action, reward, next_state, done = self.replay_memory[sample] states[i] = state actions[i] = action rewards[i] = reward next_states[i] = next_state dones[i] = done q_values_next = self.sess.run(self.q_value, feed_dict={self.state_input: next_states}) max_q_values_next = np.max(q_values_next, axis=1) q_targets = rewards + (1 - dones) * 0.99 * max_q_values_next self.sess.run(self.optimizer, feed_dict={self.state_input: states, self.action_input: actions, self.q_target: q_targets}) ``` 这是一个简单的DRQN实现,它使用LSTM作为循环层,并且处理具有可变长度的序列输入。该模型使用经验回放进行训练,并且在每个时间步上选择动作时使用epsilon-greedy策略。

相关推荐

最新推荐

recommend-type

tensorflow 实现自定义梯度反向传播代码

本文将深入探讨如何在 TensorFlow 中实现自定义梯度反向传播的代码。 首先,让我们了解为什么需要自定义梯度。在传统的反向传播过程中,TensorFlow 自动计算每个操作的梯度,这在大多数情况下已经足够。然而,对于...
recommend-type

TensorFlow车牌识别完整版代码(含车牌数据集)

通过这个示例代码,读者可以学习到如何使用TensorFlow进行深度学习模型的构建,包括卷积神经网络(CNN)的设计、数据预处理、模型训练以及模型保存和恢复等关键步骤。对于想要从事计算机视觉和车牌识别领域的开发者...
recommend-type

Tensorflow实现卷积神经网络的详细代码

在TensorFlow中,我们可以利用其强大的数学运算能力构建CNN模型。以下是对标题和描述中涉及的知识点的详细解释。 1. **卷积神经网络(CNN)**: - CNN是一种特殊的神经网络,它的核心组成部分包括卷积层和池化层。...
recommend-type

C++调用tensorflow教程

C++调用TensorFlow教程 本教程旨在指导读者如何在C++中调用TensorFlow,以便在项目中更好地使用深度学习技术。由于绝大多数的Python API都是基于Python的,而C++的API不够完善,因此本教程的出现将对项目的开发产生...
recommend-type

Tensorflow实现神经网络拟合线性回归

代码的运行效果展示了神经网络如何成功地拟合了带有噪声的非线性函数 y = x^2。虽然这个例子中的函数是二次的,但通过调整网络结构和参数,神经网络可以拟合更复杂的函数,这正是其强大的地方。 总的来说,这个例子...
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。