DnCNN的pytroch完整代码
时间: 2024-10-20 08:06:40 浏览: 36
DnCNN(Deep Neural Network for Image Denoising)是一种深度学习模型,用于图像去噪任务,通常基于卷积神经网络(CNN)。PyTorch 是一个广泛使用的深度学习框架,下面是一个简化的 PyTorch 实现 DnCNN 的基本结构代码:
```python
import torch
import torch.nn as nn
class DnCNN(nn.Module):
def __init__(self, in_channels=1, out_channels=1, n_layers=17, kernel_size=3, padding=1, bias=True):
super(DnCNN, self).__init__()
self.n_layers = n_layers
self.conv_blocks = nn.Sequential()
for _ in range(n_layers):
conv_block = [nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding, bias=bias),
nn.ReLU(inplace=True)]
if _ == n_layers - 2: # Last layer without ReLU activation
conv_block.pop() # Remove ReLU
self.conv_blocks.add_module(f'conv_{_}', nn.Sequential(*conv_block))
def forward(self, x):
output = self.conv_blocks(x)
return output
# 使用示例
input_image = torch.randn(1, in_channels, image_height, image_width)
model = DnCNN(in_channels)
denoised_image = model(input_image)
```
这个代码创建了一个包含 `n_layers` 个卷积块的 DnCNN 模型,每个卷积块由一个卷积层和一个ReLU激活函数组成。最后一层不应用ReLU。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)