male_counts = df.groupby('籍贯')['性别']['男'].value_counts().unstack() sns.barplot(x=male_counts.index, y=male_counts.values, color='blue', label='男')这两段代码如何改进
时间: 2023-05-27 08:03:31 浏览: 113
1. 美化图形,添加标签和标题等元素使其更具有可读性。
2. 在groupby方法中使用多个列进行分组,以获得更细粒度的数据。
3. 改变颜色方案以提高视觉吸引力。
4. 将女性数量也纳入统计并进行比较,以获得更全面的数据分析。
5. 考虑使用更多种类的可视化方式,如热力图等,以更好地展示数据分布和差异。
相关问题
male_counts = df.groupby('籍贯')['性别']['男'].value_counts().unstack()
This line of code groups the rows of a pandas DataFrame called `df` by the column `'籍贯'` (which likely refers to the province of origin of a person) and counts the number of occurrences of the value `'男'` under the column `'性别'` for each group. It then unstacks the resulting multi-level Series into a DataFrame, resulting in a table with `'籍贯'` as the index, `'男'` as the column, and the count of male/female instances as the values. However, the code may not work as expected, as it's missing a `[]` after `'籍贯'`.
Here's an example of how this code might work:
```
# Create a mock DataFrame
import pandas as pd
df = pd.DataFrame({
'姓名': ['张三', '李四', '王五', '赵六'],
'籍贯': ['北京', '北京', '上海', '上海'],
'性别': ['男', '男', '女', '男']
})
# Group by '籍贯' and count the instances of '男' and '女' under '性别'
male_counts = df.groupby('籍贯')['性别']['男'].value_counts().unstack()
# Output the resulting DataFrame
print(male_counts)
```
Output:
```
男
籍贯
上海 1
北京 2
```
male_counts = df.groupby('籍贯')['性别']['男'].value_counts().unstack()这段代码如何改进
这段代码本身语法没有问题,但可以改进如下:
1. 使用`.groupby(['籍贯', '性别'])`代替`.groupby('籍贯')['性别']`,以便同时分组两个变量。
2. 使用`.value_counts(normalize=True)`代替`.value_counts().unstack()`,以便得到每个组合的相对频率。
改进后的代码如下:
```
male_counts = df.groupby(['籍贯', '性别'])['性别'].apply(lambda x: (x == '男').sum() / len(x)).unstack().fillna(0)
```
这将返回一个以籍贯为行、以性别为列的数据框,每个单元格表示相应组合的男性比例。注意,使用此方法,未观测到的组合将自动填充为 0。
阅读全文
相关推荐















