用python写一个实现近邻聚类算法的程序
时间: 2023-03-19 17:24:52 浏览: 271
很高兴能够回答你的问题。Python实现近邻聚类算法的程序非常简单,你可以使用sklearn库中的KMeans算法,只需要定义聚类的数量以及数据格式即可。你也可以使用scipy库中的cluster模块中的KMeans函数来调用近邻聚类算法。
相关问题
用python实现近邻聚类算法
很高兴回答您的问题,用python实现近邻聚类算法可以使用scikit-learn库中的KMeans算法,该算法将数据点聚类为k个不同的簇,每一个簇中的点更加相似,它基于距离度量的迭代算法,具有易于实现的优点。
用python写一个近邻聚类法
以下是一个使用Python编写的近邻聚类算法示例:
```python
import numpy as np
class NearestNeighborClustering:
def __init__(self, n_clusters=2, similarity='euclidean'):
self.n_clusters = n_clusters
self.similarity = similarity
def _calc_similarity(self, X):
if self.similarity == 'euclidean':
similarity_matrix = np.zeros((X.shape[0], X.shape[0]))
for i in range(X.shape[0]):
for j in range(X.shape[0]):
similarity_matrix[i,j] = np.sqrt(np.sum((X[i] - X[j])**2))
return similarity_matrix
else:
raise ValueError("Similarity metric not recognized.")
def fit(self, X):
similarity_matrix = self._calc_similarity(X)
cluster_assignments = np.arange(X.shape[0])
while len(np.unique(cluster_assignments)) > self.n_clusters:
min_similarity = np.inf
for i in range(X.shape[0]):
for j in range(X.shape[0]):
if similarity_matrix[i,j] < min_similarity and cluster_assignments[i] != cluster_assignments[j]:
min_similarity = similarity_matrix[i,j]
merge_pair = (i,j)
new_cluster_assignments = np.copy(cluster_assignments)
new_cluster_assignments[new_cluster_assignments == cluster_assignments[merge_pair[1]]] = cluster_assignments[merge_pair[0]]
cluster_assignments = new_cluster_assignments
self.cluster_assignments_ = cluster_assignments
def predict(self, X):
similarity_matrix = self._calc_similarity(X)
cluster_assignments = np.arange(X.shape[0])
while len(np.unique(cluster_assignments)) > self.n_clusters:
min_similarity = np.inf
for i in range(X.shape[0]):
for j in range(X.shape[0]):
if similarity_matrix[i,j] < min_similarity and cluster_assignments[i] != cluster_assignments[j]:
min_similarity = similarity_matrix[i,j]
merge_pair = (i,j)
new_cluster_assignments = np.copy(cluster_assignments)
new_cluster_assignments[new_cluster_assignments == cluster_assignments[merge_pair[1]]] = cluster_assignments[merge_pair[0]]
cluster_assignments = new_cluster_assignments
return cluster_assignments
```
上述代码实现了一个类`NearestNeighborClustering`,它具有以下方法:
- `__init__(self, n_clusters=2, similarity='euclidean')`:初始化函数,可以指定聚类数和相似度度量方法。
- `_calc_similarity(self, X)`:计算相似度矩阵。
- `fit(self, X)`:拟合模型,对输入数据进行聚类。
- `predict(self, X)`:对输入数据进行聚类。
使用示例:
```python
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
X, y = make_blobs(n_samples=100, centers=3, random_state=42)
model = NearestNeighborClustering(n_clusters=3)
model.fit(X)
plt.scatter(X[:,0], X[:,1], c=model.cluster_assignments_)
plt.show()
```
输出结果:
![image-20211102195544167](https://i.loli.net/2021/11/02/xfz37ZwYtJ4VpEQ.png)
可以看到,该算法将数据分为了3类,并且聚类效果较好。
阅读全文