利用 TinyDist进行知识蒸馏,给我一个可运行的python代码
时间: 2023-04-05 10:01:07 浏览: 82
以下是一个简单的 TinyDist 知识蒸馏的 Python 代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms
from distiller import Distiller
# 定义模型
class TeacherModel(nn.Module):
def __init__(self):
super(TeacherModel, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=True)
self.fc = nn.Linear(64 * 8 * 8, 10)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class StudentModel(nn.Module):
def __init__(self):
super(StudentModel, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(16)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(32)
self.relu2 = nn.ReLU(inplace=True)
self.fc = nn.Linear(32 * 8 * 8, 10)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# 加载数据集
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = CIFAR10(root='./data', train=True, download=True, transform=train_transform)
test_dataset = CIFAR10(root='./data', train=False, download=True, transform=test_transform)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=4)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
teacher_model = TeacherModel()
student_model = StudentModel()
optimizer = optim.SGD(student_model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
# 定义蒸馏器
distiller = Distiller(teacher_model, student_model, train_loader, test_loader, criterion, optimizer)
# 开始蒸馏
distiller.train(epochs=100)
```
阅读全文