用Python和Numpy实现波士顿房价预测任务的模型设计
时间: 2024-09-14 15:09:39 浏览: 76
采用线性回归模型对波士顿房价进行预测-numpy实现
5星 · 资源好评率100%
在Python中,特别是利用numpy库和机器学习库scikit-learn,可以构建一个简单的线性回归模型来预测波士顿房价。波士顿房价数据集是一个经典的数据科学案例,通常用于入门机器学习教程。以下是基本步骤:
1. **导入所需的库**:
```python
import numpy as np
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
```
2. **加载数据**:
```python
boston = load_boston()
X = boston.data
y = boston.target
```
3. **数据预处理**:
```python
# 划分特征和目标变量
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 归一化或标准化数值型特征,如果需要的话
X_train = preprocessing.scale(X_train)
X_test = preprocessing.scale(X_test)
```
4. **创建并训练模型**:
```python
model = LinearRegression() # 或者你可以尝试其他线性模型如Lasso、Ridge等
model.fit(X_train, y_train)
```
5. **模型评估**:
```python
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Mean Squared Error:", mse)
print("R^2 Score:", r2)
```
6. **保存和使用模型**:
如果你想保存模型以便后续使用,可以这样做:
```python
joblib.dump(model, 'boston_housing_model.joblib')
```
然后通过`joblib.load()`加载。
阅读全文