Q->Data=(int*)malloc(sizeof(int)*(MaxSize+1));

时间: 2023-11-21 19:04:50 浏览: 38
A: This line of code dynamically allocates memory for an integer array of size MaxSize + 1. The malloc function is used to allocate memory on the heap, and the sizeof operator is used to determine the size of each integer element in the array. The resulting pointer to the allocated memory is then assigned to the variable Data.
相关问题

#include<stdio.h> #include<stdlib.h> Typedef struct Graph{ Char* vexs; Int** arcs; Int vexnum,arcnum; )Graph; Graph* initGraph(int vexnum){ Graph* G=(Graph*)malloc(sizeof(Graph)) G->vexs=(char*)malloc(sizeof (char)*vexnum) G->arcs=(int**)malloc(sizeof (int*)*vexnum) For(int i=0;i<vexnum;I++) { G->arcs[i]= (int*)malloc(sizeof (int)*vexnum)} G->vexnum=Vexnum; G->arcnum=0; Return G } Int createGraph(Graph* G,char* vexs,int* arcs) {for(i=0;i<G->vexnum;i++) G->vexs[i]=vexs[i]; For((j=0;j<G->vexnum;j++) G->arcs[i][j]=*(arcs+i*vexnum+j ) If(G->arcs[i][j]!=0) G->arcnum++; } G->arcnum/=2; } Void DFS(Graph* G,int *visit,int index){ Printf("%c",G->vexs[index]) Visit[index]=1; For(int i=0;i<G->vexnum;i++) If(G->arcs[index][i]==1&&visit[index]!=1) DFS(G,visit,i) } Void BFS(Graph* G,int *visit ,int index){ Printf("%c",&G->vexs[index]) Visit[index]=1; Queue* initQueue(); enQueue(Q,index); while(!isEmpty(Q)) int i=deQueue(); For(int j=0;j<G->vexnum;J++) If(G->arcs[i][j]==1&&!visit[j]) Printf("%c",G->vexs[j]) Visit[j]=1; enQueue(Q,j);} } #define MAXSIZE 5 Typedef struct Queue{ Int front Int rear Int data[MAXSIZE] }Queue; Queue* Q InitQueue() { Queue* Q=(Queue*)malloc(sizeof(QUeue)); Queue->front=Queue->rear=0; Return Q; } Int enQueue(Queue* Q, int data) If (isFull(Q)){ Return 0} Else Q->data[Q->rear]=data; Q->rear=(Q->rear+1)%MAXSIZE } Int deQueue(Queue* Q) If (isempty(Q)){ Return 0} Else Int data=Q->data[Q->front]; Q->front=(Q->front+1)%MAXSIZE Return data; } Void printfQueue(Queue* Q){ Int length=(Q->rea-Q->front+MAXSIZE)%MAXSIZE For(int i=0;i<length;i++) Printf("%d->",Q->data[Q->front]) Q->front=(Q->front+1)%MAXSIZE; Int main(){ Graph* G=initGraph(5); Int arcs[5][5]={ 0,1,1,1,0, 0,1,1,1,0, 0,1,1,1,0, 0,1,1,1,0, 0,1,1,1,0, }; CreateGraph(*G,"ABCDE",(int*)arcs); Int* visit=(int*)malloc(sizeof(int)*G->vexnum); For(int i=0;i<G->vexnum;i++) Visit[i]=0; DFS(G,visit,0); BFS(G,visit,0) }修改正确并转化为c语言代码

抱歉,您提供的代码已经是C语言代码。不过,代码中存在一些拼写错误和语法错误,我给您修正一下: ``` #include <stdio.h> #include <stdlib.h> #define MAXSIZE 5 typedef struct Graph{ char* vexs; int** arcs; int vexnum, arcnum; }Graph; Graph* initGraph(int vexnum) { Graph* G = (Graph*)malloc(sizeof(Graph)); G->vexs = (char*)malloc(sizeof(char) * vexnum); G->arcs = (int**)malloc(sizeof(int*) * vexnum); for(int i = 0; i < vexnum; i++) { G->arcs[i] = (int*)malloc(sizeof(int) * vexnum); } G->vexnum = vexnum; G->arcnum = 0; return G; } int createGraph(Graph* G, char* vexs, int* arcs) { for(int i = 0; i < G->vexnum; i++) { G->vexs[i] = vexs[i]; for(int j = 0; j < G->vexnum; j++) { G->arcs[i][j] = *(arcs + i * G->vexnum + j); if(G->arcs[i][j] != 0) { G->arcnum++; } } } G->arcnum /= 2; } typedef struct Queue{ int front; int rear; int data[MAXSIZE]; }Queue; Queue* initQueue() { Queue* Q = (Queue*)malloc(sizeof(Queue)); Q->front = Q->rear = 0; return Q; } int isFull(Queue* Q) { if((Q->rear + 1) % MAXSIZE == Q->front) { return 1; } else { return 0; } } int isEmpty(Queue* Q) { if(Q->front == Q->rear) { return 1; } else { return 0; } } int enQueue(Queue* Q, int data) { if(isFull(Q)) { return 0; } else { Q->data[Q->rear] = data; Q->rear = (Q->rear + 1) % MAXSIZE; return 1; } } int deQueue(Queue* Q) { if(isEmpty(Q)) { return 0; } else { int data = Q->data[Q->front]; Q->front = (Q->front + 1) % MAXSIZE; return data; } } void printfQueue(Queue* Q) { int length = (Q->rear - Q->front + MAXSIZE) % MAXSIZE; for(int i = 0; i < length; i++) { printf("%d->", Q->data[Q->front]); Q->front = (Q->front + 1) % MAXSIZE; } } void DFS(Graph* G, int* visit, int index){ printf("%c", G->vexs[index]); visit[index] = 1; for(int i = 0; i < G->vexnum; i++) { if(G->arcs[index][i] == 1 && visit[i] != 1) { DFS(G, visit, i); } } } void BFS(Graph* G, int* visit ,int index) { printf("%c", G->vexs[index]); visit[index] = 1; Queue* Q = initQueue(); enQueue(Q, index); while(!isEmpty(Q)) { int i = deQueue(Q); for(int j = 0; j < G->vexnum; j++) { if(G->arcs[i][j] == 1 && !visit[j]) { printf("%c", G->vexs[j]); visit[j] = 1; enQueue(Q, j); } } } } int main() { Graph* G = initGraph(5); int arcs[5][5] = { {0, 1, 1, 1, 0}, {0, 1, 1, 1, 0}, {0, 1, 1, 1, 0}, {0, 1, 1, 1, 0}, {0, 1, 1, 1, 0} }; createGraph(G, "ABCDE", (int*)arcs); int* visit = (int*)malloc(sizeof(int) * G->vexnum); for(int i = 0; i < G->vexnum; i++) { visit[i] = 0; } DFS(G, visit, 0); printf("\n"); for(int i = 0; i < G->vexnum; i++) { visit[i] = 0; } BFS(G, visit, 0); printf("\n"); return 0; } ```

Q->Data=(int*)malloc(sizeof(int)*(MaxSize+1));这里的sizeof(int*)(MaxSize+1)怎么理解

这条代码的含义是在堆内存中分配一个大小为 sizeof(int)*(MaxSize 1) 字节的空间,并将其首地址赋值给指针变量 Data。 其中,sizeof(int) 表示 int 类型所占用的字节数,MaxSize 1 表示要分配的 int 类型元素的个数(MaxSize 个元素加上一个额外的位置,用于防止数组越界)。因此,sizeof(int)*(MaxSize 1) 就是要分配的空间的总大小。

相关推荐

完善如下代码:#include<stdio.h> #include<stdlib.h> #define MAXSIZE 100 #define ERROR 0 #define OK 1 typedef int Status; typedef char ElementType; typedef struct TNode{ ElementType Data; struct TNode * Left; struct TNode * Right; }BiTNode,* BinTree; typedef struct QNode{ BinTree Data[MAXSIZE]; int front,rear; }* Queue; void LevelorderTraversal ( BinTree BT ); Queue CreatQueue(); Status IsFullQ(Queue Q); Status AddQ(Queue Q,BinTree X); Status IsEmptyQ(Queue Q); BinTree DeleteQ(Queue Q); BinTree CreatBinTree() { ElementType Data; BinTree BT, T; Queue Q = CreatQueue(); scanf("%c",&Data); if( Data != '@'){ BT = (BinTree)malloc(sizeof(struct TNode)); BT->Data = Data; BT->Left = BT->Right = NULL; AddQ(Q,BT); } else return NULL; while(!IsEmptyQ(Q)){ T = DeleteQ(Q); scanf("%c",&Data); if( Data == '@') T->Left = NULL; else{ T->Left = (BinTree)malloc(sizeof(struct TNode)); T->Left->Data = Data; T->Left->Left = T->Left->Right = NULL; AddQ(Q,T->Left); } scanf("%c",&Data); if(Data == '@') T->Right = NULL; else{ T->Right = (BinTree)malloc(sizeof(struct TNode)); T->Right->Data = Data; T->Right->Left = T->Right->Right = NULL; AddQ(Q,T->Right); } } return BT; } Queue CreatQueue() { Queue Q = (Queue)malloc(sizeof(struct QNode)); Q->front = Q->rear = 0; return Q; } Status IsFullQ(Queue Q) { if( (Q->rear+1)%MAXSIZE == Q->front ) return OK; else return ERROR; } Status AddQ(Queue Q,BinTree X) { if ( IsFullQ(Q) ) { printf("队列满"); return ERROR; } else { Q->rear = (Q->rear+1)%MAXSIZE; Q->Data[Q->rear] = X; return OK; } } Status IsEmptyQ(Queue Q) { if( Q->front == Q->rear ) return OK; else return ERROR; } BinTree DeleteQ(Queue Q) { if ( IsEmptyQ(Q) ) { printf("队列空"); return NULL; } else { Q->front = (Q->front+1)%MAXSIZE; return Q->Data[Q->front]; } } int main() { BinTree BT; BT = CreatBinTree(); if(BT == NULL){ printf("\n空树!\n"); }else{ printf("层序遍历的结果为:"); LevelorderTraversal ( BT ); } return 0; }

#include<stdio.h> #include<stdlib.h> #include<string.h> #define MAXSIZE 100 #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define INFEASIBLE -1 typedef struct {/* 栈类定义 */ char data[MAXSIZE]; int top; }SqStack; typedef struct { /* 队列类定义 */ char data[MAXSIZE]; int front;/* 队首指针 */ int rear;/* 队尾指针 */ }SqQueue; void InitSqStack(SqStack *s) { /* 初始化栈,将栈置空 */ s->top=0; /* 令top为0表示栈为空 */ } int InitSqQueue(SqQueue *q) {/* 初始化循环队列,将队列置为空 */ *q=(SqQueue *)malloc(sizeof(SqQueue));/* 分配队列的存储空间 */ if(*q==NULL){ return 0; } (*q)->front=(*q)->rear=0;/* 令front为0 */ return 1; } int PushStack(SqStack *s,char e) { /* 将元素e压入到栈S中 */ if(s->top==MAXSIZE)/* 栈满则操作失败 */ return 0; s->data[s->top]=e; s->top++; return 1; } int PushSqQueue(SqQueue *q,char e) {/* 将元素e压入到队列Q中 */ if(q->front==(q->rear+1)%MAXSIZE) /* 队列满则操作失败 */ return 0; q->data[q->rear]=e; q->rear=(q->rear+1)%MAXSIZE; return 1; } int PopStack(SqStack *s,char *e) {/* 将栈S中的栈顶元素出栈 */ if(s->top==0) /* 栈空则操作失败 */ return 0; s->top--; *e=s->data[s->top]; return 1; } int PopQueue(SqQueue *q,char *e) { /* 将队列Q中的队首元素删除 */ if(q->front==q->rear) /* 队列空则操作失败 */ return 0; *e=q->data[q->front]; q->front=(q->front+1)%MAXSIZE; return 1; } void Print(SqStack *s){ while(s->top!=0){ char x; PopStack(s,&x); printf("%c",x); } } void EditString(){ SqStack s; InitSqStack(&s); char c; while((c=getchar())!='\n'){ if(c=='#'){ char x; PopStack(&s,&x); } else if(c=='@'){ InitSqStack(&s); } else{ PushStack(&s,c); } } Print(&s); } void ReadString() { SqQueue q; InitSqQueue(&q); char c; while((c=getchar())!='\n'){ PushSqQueue(&q,c); } while(q.front!=q.rear){ char x; PopQueue(&q,&x); printf("%c",x); } } int main() { SqQueue *q; if(InitSqQueue(&q) == 0){return 0;} EditString(); ReadString(); free(q); return 0; }检查代码错误,并修改

请找出下列代码的问题并解决:#include<iostream> using namespace std; #define Maxsize 100 typedef struct node//二叉树结构 { char data; struct node* lchild; struct node* rchild; }BTnode; void CreateNode(BTnode*& bt) { char h; h = getchar(); if (h != '#') { bt = (BTnode*)malloc(sizeof(BTnode)); bt->data = h; CreateNode(bt->lchild); CreateNode(bt->rchild); } else bt = NULL; } void DestoryNode(BTnode*& bt) { if (bt != NULL) { DestoryNode(bt->lchild); DestoryNode(bt->rchild); free(bt); } } typedef struct//顺序队列 { BTnode* data[Maxsize]; int front; int rear; }SqQueue; typedef struct//顺序栈 { BTnode* data[Maxsize]; int top; }SqStack; void InitQueue(SqQueue*& q) { q = (SqQueue*)malloc(sizeof(SqQueue)); q->front = q->rear = -1; } void InitStack(SqStack*& s) { s = (SqStack*)malloc(sizeof(SqStack)); s->top = -1; } void DestoryQueue(SqQueue*& q) { free(q); } void DestoryStack(SqStack*& s) { free(s); } bool QueueEmpty(SqQueue* q) { return(q->front == q->rear); } bool StackEmpty(SqStack* s) { return(s->top == -1); } bool enQueue(SqQueue*& q, BTnode*& node) { if (q->rear == Maxsize - 1) return 0; q->rear++; q->data[q->rear] = node; return 1; } bool Push(SqStack*& s, BTnode*& node) { if (s->top == Maxsize - 1) return 0; s->top++; s->data[s->top] = node; return 1; } bool deQueue(SqQueue*& q, BTnode*& node) { if (q->front == q->rear) return 0; q->front++; node = q->data[q->front]; return 1; } bool Pop(SqStack*& s) { if (s->top == -1) return 0; cout << s->data[s->top] << "\t"; s->top--; return 1; } void LevelOrder(BTnode* bt) { BTnode* p; p = new BTnode; SqQueue* qu; SqStack* st; InitStack(st); InitQueue(qu); enQueue(qu, bt); while (!QueueEmpty(qu)) { deQueue(qu, p); Push(st, bt); if (p->lchild != NULL) enQueue(qu, p->lchild); if (p->rchild != NULL) enQueue(qu, p->rchild); } cout << "二叉树的自下而上,从右到左的层次遍历结果:" << endl; if (!StackEmpty(st)) Pop(st); DestoryQueue(qu); DestoryNode(p); DestoryStack(st); } int main() { BTnode* B; cout << "输入二叉树:" << endl; CreateNode(B); LevelOrder(B); DestoryNode(B); return 0; }

#define MAXSIZE 100 typedef int KeyType; /*关键字类型*/ typedef struct { KeyType key; /*InfoType otherinfo;*/ }RedType; /*记录类型*/ typedef struct BiTNode { RedType data; struct BiTNode *lchild,*rchild; }BiTNode, *BiTree; /*动态查找表的二叉链表存储表示*/#include <stdio.h> #include <stdlib.h> #include <string.h> #include "search.h" BiTree Search_BST(BiTree T, KeyType key, BiTNode **parent) {/*在二叉排序树T上查找其关键字等于key的记录结点。若找到返回该结点指针,parent指向其双亲;否则返回空指针,parent指向访问路径上最后一个结点。*/ // 请在这里补充代码,完成本关任务 /********** Begin *********/ /********** End **********/ } void Insert_BST(BiTree *T, RedType r)/*若二叉排序树T中没有关键字为r.key的记录,则插入*/ { BiTNode *p,*q,*parent; parent=NULL; p=Search_BST(*T,r.key,&parent); /*查找*/ if(p) printf("BST中有结点r,无需插入\n"); else { p=parent; q=(BiTNode *)malloc(sizeof(BiTNode)); q->data=r; q->lchild=q->rchild=NULL; if(*T==NULL) *T=q; /*若T为空,则q为新的根*/ else if(r.keydata.key) p->lchild=q; else p->rchild=q; } } BiTree Create_BST( ) /*二叉排序树的构造*/ {/*输入若干记录的关键字(以-1标志结束),生成一棵BST,采用二叉链表存储,返回其根指针T*/ BiTree T; RedType r; T=NULL; /*建空树*/ scanf("%d",&r.key); while(r.key!=-1) { Insert_BST(&T, r); scanf("%d",&r.key); } return T; } void PreOrder(BiTree bt) /*先序遍历*/ { if(bt) { printf("%d ",bt->data.key); PreOrder(bt->lchild); PreOrder(bt->rchild); } } void InOrder(BiTree bt) /*中序遍历*/ { if(bt) { InOrder(bt->lchild); printf("%d ",bt->data.key); InOrder(bt->rchild); } 补充代码

请优化一下代码:#include <stdio.h> #include <stdlio.h> #define MaxSize 100 typedef char ElemType; typedef struct node//二叉树顺序结构的类型声明 { ElemType data;//数据元素 struct node *lchild;//指向左孩子结点 struct node *rchild;//指向有孩子结点 }BTNode; void CreateBTree(BTNode *&b,char *str)//创建二叉树 { BTNode *St[MaxSize],*p; int top=-1,k,j=0; char ch; b=NULL; ch=str[j]; while(ch!='\0') { switch(ch) { case'(':top++;St[top]=p;k=1;break; case')':top--;break; case',':k=2;break; default:p=(BTNode *)malloc(sizeof(BTNode)); p->data=ch; p->lchild=p->rchild=NULL; if(b==NULL) b=p; else { switch(k) { case 1:St[top]->lchild=p;break; case 2:St[top]->rchild=p;break; } } } j++; ch=str[j]; } } void DestoryBTree(BTNode *&b)//销毁二叉树 { if(b!=NULL) { DestoryBTree(b->lchild); DestoryBTree(b->rchild); free(b); } } BTNode *FindNode(BTNode *b,ELemType x)//查找节点 { BTNode *p; if(b==NULL) return NULL; else if(b->data==x) return b; else { p=FindNode(b->lchild,x); if(p!=NULL) return p; else return FindNode(b->lchild,x); } } BTNode *LchildNode(BTNode *p)//返回节点p的左孩子节点 { return p->lchild; } BTNode *RchildNode(BTNode *p)//返回节点p的右孩子节点 { return p->rchild; } int BTHeight(BTNode *b) { int lchildh,rchildh; if(b==NULL)return(0); else { lchildh=BTHeight(b->lchild); rchildh=BTHeight(b->rchild); return (lchildh>rchildh)?(lchildh+1):(rchildh+1); } } void DispBTree(BTNode *b)//输出二叉树 { if(b!=NULL) { printf("%c",b->data); if(b->lchild!=NULL||b->rchild!=NULL) { printf("("); DispBTree(b->lchild); if(b->rchild!=NULL)printf(","); DispBTree(b->rchild); printf("("); } } } void PreOrder(BTNode *b)//先序遍历 { if(b!=NULL) { printf("%c",b->data); PreOrder(b->lchild); PreOrder(b->rchild); } } void InOrder(BTNode *b)//中序遍历 { if(b!=NULL) { InOrder(b->lchild); printf("%c",b->data); InOrder(b->rchild); } }

最新推荐

recommend-type

26. 基于视觉的道路识别技术的智能小车导航源代码.zip

1.智能循迹寻光小车(原埋图+PCB+程序).zip 2.智能循迹小车程序.zip 3.智能寻迹小车c程序和驱动.zip 4. 智能小车寻迹(含霍尔测連)c程序,zip 5.智能小车完整控制程序,zip 6.智能小车黑线循迹、避障、遥控实验综合程序,zip 7.智能小车测速+12864显示 C程序,zip 8. 智能小车(循迹、避障、遥控、测距、电压检测)原理图及源代码,zip 9.智能灭火小车,zip 10,智能搬运机器人程序.zip 11.智能arduino小车源程序,z1p 12.-种基于STM32的语音蓝牙智能小车,zip 13.循迹小车决赛程序,zip 14.循迹小车51程序(超声波 颜色识别 舵机 步进电机 1602).zip 15.寻光小车,zip 16.小车测速程序,zip 17.五路循迹智能小车c源码.zip 18.无线小车原理图和程序,zip 19.四驱智能小车资料包(源程序+原理图+芯片手册+各模块产品手册).zip 20.4WD小车安装教程及程序,z1p 21.四路红外循迹小车决赛程序,zip 22,适合初学者借鉴的arduino智能小车代码集合,zip 23.脑电波控制小车,zip 24.蓝牙智能避障小车,zip 25.基于树莓派监控小车源码.zip 26.基于视觉的道路识别技术的智能小车导航源代码,zip 27.基于STM32F407的超声波智能跟随小车,zip 28.基于arduino的蓝牙智能小车,zip.zip 29.基于51的蓝牙智能小车,zip 30.基于51单片机的红外遥控控制小车程序,zip
recommend-type

295_驾校预约管理系统的设计与实现-源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

软件工程每个学期的生活及学习目标

软件工程每个学期的生活及学习目标可能包括以下内容: 1. 学习软件开发的基本理论和实践知识,掌握常用的编程语言和开发工具。 2. 熟悉软件开发的流程和方法,了解软件工程的标准和规范。 3. 掌握软件需求分析、设计、开发、测试、部署和维护的技能,能够独立完成简单的软件开发任务。 4. 培养团队合作的能力,学会与他人进行有效的沟通和协作,共同完成软件开发项目。 5. 提高自己的计算机技术水平,了解最新的软件开发技术和趋势,积极参与开源社区和技术交流活动。 6. 注重学习方法和习惯的培养,养成良好的学习和生活习惯,保持健康的身心状态。 7. 积极参加校内外的实践活动和比赛,拓展自己的视