function [y1,y2,y3,y4,y5,p]= fcn(Ucellt0,Ucellt1,Ucellt2,Icellt0,Icellt1,Icellt2,Urev,t,T1,T2,T3,T4,T5,q) na = 2;nb = 3;n = na+nb; ucellt1 = Ucellt0 - Urev; % t时刻电压 ucellt2 = Ucellt1 - Urev; % t-1时刻电压 ucellt3 = Ucellt2 - Urev; % t-2时刻电压 icellt1 = Icellt0; % t时刻电流 icellt2 = Icellt1; % t-1时刻电流 icellt3 = Icellt2; % t-2时刻电流 %p = 1; % 新息长度 lambda = 1; % 遗忘因子lambda r = 1; p0 = 1*10^6; if t==0 par0 = zeros(5,1); P1 = eye(n)*p0; else par0 =[T1,T2,T3,T4,T5]'; P1=q; end Y = ucellt1; varphi = [-ucellt2;-ucellt3;icellt1;icellt2;icellt3]; phi = varphi; L1 = P1*varphi/(lambda+varphi'*P1*varphi); % P为修正系数初值 parL=par0+L1*(Y-phi'*par0); P11=(eye(5)-L1*varphi')*P1/lambda; % P1=(P1-L1*varphi')*P1/lambda; par1 = parL; p =P11; y1 = par1(1); y2 = par1(2); y3 = par1(3); y4 = par1(4); y5 = par1(5);

时间: 2024-04-03 19:33:50 浏览: 12
这段代码是一个函数,用于根据输入的电池电压和电流数据,利用基于卡尔曼滤波的参数估计方法,计算出电池的五个参数 T1、T2、T3、T4、T5,并返回这些参数以及修正系数 p。具体实现过程中,首先将电压和电流数据转化为状态向量 varphi,然后利用卡尔曼滤波的方法对状态向量进行估计和修正,得到最终的参数估计结果。在函数的前两行中,定义了 na 和 nb 分别为状态向量中电压和电流的维度,n 为状态向量的总维度,即 n = na + nb = 5。在函数中,lambda 表示遗忘因子,r 表示新息长度,p0 表示修正系数的初值。函数的输入参数包括 Ucellt0、Ucellt1、Ucellt2、Icellt0、Icellt1、Icellt2、Urev、t、T1、T2、T3、T4、T5、q,其中 Ucellt0、Ucellt1、Ucellt2、Icellt0、Icellt1、Icellt2 分别表示电池当前时刻和之前两个时刻的电压和电流数据,Urev 为反电动势,t 表示当前时刻,T1、T2、T3、T4、T5 表示电池五个参数的初值,q 表示修正系数 P1 的初值。函数的输出参数包括五个电池参数 y1、y2、y3、y4、y5,以及修正系数 p。
相关问题

function [y1,y2,y3,y4,y5,y6]= fcn(u1,u2,u3,u4,u5,u6) y1,y2,y3,y4,y5,y6 = u1+u2+u3+u4+u5+u6;把其中的变量定义一下

这是一个 MATLAB 函数,其中: - u1, u2, u3, u4, u5, u6 是输入变量; - y1, y2, y3, y4, y5, y6 是输出变量; - 函数的功能是将输入变量相加,并将结果赋给输出变量。 可以将变量定义如下: function [y1, y2, y3, y4, y5, y6] = fcn(u1, u2, u3, u4, u5, u6) y1 = u1 + u2 + u3 + u4 + u5 + u6; y2 = u1 + u2 + u3 + u4 + u5 + u6; y3 = u1 + u2 + u3 + u4 + u5 + u6; y4 = u1 + u2 + u3 + u4 + u5 + u6; y5 = u1 + u2 + u3 + u4 + u5 + u6; y6 = u1 + u2 + u3 + u4 + u5 + u6; end

解释这段代码 function y = fcn(u) y = (5-0.01)*exp(-3*u)+0.01; end

这段代码定义了一个名为 "fcn" 的函数,该函数接受一个输入参数 "u"。函数的输出是一个名为 "y" 的变量,其值通过下面的表达式计算得出: y = (5-0.01)*exp(-3*u) + 0.01; 该表达式中的 exp(-3*u) 是指 e 的 -3*u 次方,也就是自然指数的 -3*u 次幂。整个表达式的含义是将 (5-0.01)*exp(-3*u) 的结果加上 0.01,然后将该结果赋值给变量 y。因此,当输入参数 u 的值变化时,函数 fcn 的输出 y 的值也会随之变化。

相关推荐

function [solution, objectiveValue, reasonSolverStopped] = solveOptimizationProblem(theta1, theta2, theta3, theta4, theta5, theta6, theta7, theta8, dy, pointD, outlet_angle, parameters, P_in, T_in, mass_judge, H_out_specified,xm) % 创建优化问题对象 problem = optimproblem; % 添加目标函数 problem.Objective = fcn2optimexpr(@objectiveFcn, theta1, theta2, theta3, theta4, theta5, theta6, theta7, theta8, dy, pointD, outlet_angle, parameters, P_in, T_in); % 添加约束条件 constraintExpr1 = fcn2optimexpr(@constraintFcn1, theta1, theta2, theta3, theta4, theta5, theta6, theta7, theta8, dy, pointD, outlet_angle, parameters, P_in, T_in); problem.Constraints.constraintExpr1 = constraintExpr1 == mass_judge; constraintExpr2 = fcn2optimexpr(@constraintFcn2, theta1, theta2, theta3, theta4, theta5, theta6, theta7, theta8, dy, pointD, outlet_angle, parameters, P_in, T_in); problem.Constraints.constraintExpr2 = constraintExpr2 == H_out_specified; % 创建非线性问题的选项结构并指定初始点 options = optimoptions('fmincon', 'Display', 'iter', 'Algorithm', 'interior-point', 'SpecifyObjectiveGradient', true, 'SpecifyConstraintGradient', true); x0 = xm; % 替换为您的初始点 if isempty(x0) error('初始点结构体为空,请设置合适的初始值。'); end % 求解优化问题 [solution, objectiveValue, reasonSolverStopped] = solveOptimizationProblem(theta1, theta2, theta3, theta4, theta5, theta6, theta7, theta8, dy, pointD, outlet_angle, parameters, P_in, T_in, mass_judge, H_out_specified,x0); end

>> function [sa,sb,sc] = fcn(Ts,L1,L2,C2,udc,uca,ucb,ucc,i1a,i1b,i1c,i2a,i2b,i2c,i2refa,i2refb,i2refc,ucrefa,ucrefb,ucrefc,ea,eb,ec,i1refa,i1refb,i1refc) K1=Ts/L2;temp=0;C=0;P=0;mpc=1;sa=0;sb=0;sc=0;K2=Ts/C2;K3=Ts/L1; w1=1; w2=0.7; w3=20; g=[0 0 0 0 0 0 0 0]; h=[0 0 0 0 0 0 0 0]; k=[0 0 0 0 0 0 0 0]; z=[0 0 0 0 0 0 0 0]; g(1)=abs(i2refa-i2a-K1*(uca-udc*0))+abs(i2refb-i2b-K1*(ucb-udc*0))+abs(i2refc-i2c-K1*(ucc-udc*0)); g(2)=abs(i2refa-i2a-K1*(uca-udc*(-1/3)))+abs(i2refb-i2b-K1*(ucb-udc*(-1/3)))+abs(i2refc-i2c-K1*(ucc-udc*(2/3))); g(3)=abs(i2refa-i2a-K1*(uca-udc*(-1/3)))+abs(i2refb-i2b-K1*(ucb-udc*(2/3)))+abs(i2refc-i2c-K1*(ucc-udc*(-1/3))); g(4)=abs(i2refa-i2a-K1*(uca-udc*(-2/3)))+abs(i2refb-i2b-K1*(ucb-udc*(1/3)))+abs(i2refc-i2c-K1*(ucc-udc*(1/3))); g(5)=abs(i2refa-i2a-K1*(uca-udc*(2/3)))+abs(i2refb-i2b-K1*(ucb-udc*(-1/3)))+abs(i2refc-i2c-K1*(ucc-udc*(-1/3))); g(6)=abs(i2refa-i2a-K1*(uca-udc*(1/3)))+abs(i2refb-i2b-K1*(ucb-udc*(-2/3)))+abs(i2refc-i2c-K1*(ucc-udc*(1/3))); g(7)=abs(i2refa-i2a-K1*(uca-udc*(1/3)))+abs(i2refb-i2b-K1*(ucb-udc*(1/3)))+abs(i2refc-i2c-K1*(ucc-udc*(-2/3))); g(8)=abs(i2refa-i2a-K1*(uca-udc*0))+abs(i2refb-i2b-K1*(ucb-udc*0))+abs(i2refc-i2c-K1*(ucc-udc*0)); % for P=1:8 % z(P)=w1*g(P)+w2*h(P)+w3*k(P); % end % temp=z(1); % for C=1:8 % if z(C)<temp % temp=z(C); % mpc=C; % end % end switch mpc case 1 sa=0;sb=0;sc=0; case 2 sa=0;sb=0;sc=1; case 3 sa=0;sb=1;sc=0; case 4 sa=0;sb=1;sc=1; case 5 sa=1;sb=0;sc=0; case 6 sa=1;sb=0;sc=1; case 7 sa=1;sb=1;sc=0; case 8 sa=1;sb=1;sc=1; otherwise sa=0;sb=0;sc=0; end 这是matlab function中的一段代码如何修改代码找出使g输出最小的四个输入状态

最新推荐

recommend-type

2280.宁乡杨氏绍纶谱: 十卷.pdf

2280.宁乡杨氏绍纶谱: 十卷
recommend-type

交互式多模型IMM卡尔曼滤波仿真(运动轨迹 位置估计值估计误差)【含Matlab源码 4619期】.mp4

Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

储能技术课件-面向新型电力系统的新型储能电站系统集成及运营支撑关键技术qyt.pptx

储能技术课件-面向新型电力系统的新型储能电站系统集成及运营支撑关键技术qyt.pptx
recommend-type

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节 线性代数的核心问题是求解方程组。这些方程都是线性的,即未知数仅与数相乘——我们绝不会 遇见 x 乘以 y。我们的第一个线性方程组较小。接下来你来看看它引申出多远: 两个方程 两个未知数 x − 2y = 1 3x + 2y = 11 (1) 我们一次从一个行开始。第一个方程 x − 2y = 1 得出了 xy 平面的一条直线。由于点 x = 1, y = 0 解 出该方程,因此它在这条直线上。因为 3 − 2 = 1,所以点 x = 3, y = 1 也在这条直线上。若我们选择 x = 101,那我们求出 y = 50。 这条特定直线的斜率是 12,是因为当 x 变化 2 时 y 增加 1。斜率在微积分中很重要,然而这是线 性代数! 图 2.1 将展示第一条直线 x − 2y = 1。此“行图”中的第二条直线来自第二个方程 3x + 2y = 11。你 不能错过两条线的交点 x = 3, y = 1。点 (3, 1) 位于两条线上并且解出两个方程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

识别MATLAB微分方程求解中的混沌行为:分析非线性方程混沌行为的实用技巧

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程是描述物理、工程和金融等领域中动态系统的数学模型。MATLAB提供了强大的工具来求解微分方程,包括内置求解器和自定义函数
recommend-type

physon如何做ERP系统

作为一个AI语言模型,我可以给您提供一些基本的建议和思路: 1.明确需求和目标:在开始开发ERP系统之前,需要明确您的业务需求和目标,了解您的业务流程、流程数据、员工角色和权限、财务管理等方面的要求,这样才能更好的设计和开发ERP系统。 2.选择技术框架和开发工具:选择合适的技术框架和开发工具是ERP系统开发的关键。选择一种流行的技术框架和工具可以提高开发效率和质量。 3.设计数据库:ERP系统需要一个功能强大的数据库来存储数据。设计数据库需要考虑数据的完整性、安全性和可扩展性。 4.设计系统架构:系统架构是ERP系统的骨架,需要考虑系统的可扩展性、可维护性和性能。 5.开发和测试:
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

探索MATLAB微分方程求解中的分岔分析:揭示方程动态行为的秘密

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程在科学、工程和金融等领域有着广泛的应用。MATLAB作为一种强大的数值计算软件,提供了丰富的微分方程求解工具。本章将概述