离散数学问题:(P→Q)∧P→Q的主析取范式是?
时间: 2024-01-22 20:18:03 浏览: 99
首先,我们可以使用蕴含式的推导规则将前提(P→Q)∧P转化为Q∧P,即:
```
(P → Q) ∧ P
≡ ¬P ∨ Q ∧ P (蕴含式的推导规则)
≡ (¬P ∨ Q) ∧ (¬P ∨ P) (分配律)
≡ (¬P ∨ Q) ∧ 1 (否定律)
≡ ¬P ∨ Q (恒等律)
```
然后,我们可以使用主合取范式的规则将¬P ∨ Q转化为主析取范式,即:
```
¬P ∨ Q
≡ (¬P ∨ Q ∨ 0) ∧ (¬P ∨ Q ∨ 1) (主合取范式的规则)
≡ (¬P ∨ Q) ∧ (¬P ∨ Q ∨ 1) (零元素和恒等元素的规则)
≡ (¬P ∨ Q) ∧ 1 (恒等元素的规则)
≡ ¬P ∨ Q (恒等元素的规则)
```
因此,(P→Q)∧P→Q的主析取范式为¬P ∨ Q。
相关问题
离散数学求 p → ((r → q) ∧ (¬r → ¬q))的主析取范式
首先,我们可以将条件语句转化为蕴含式:
p → ((r → q) ∧ (¬r → ¬q)) = ¬p ∨ ((r → q) ∧ (¬r → ¬q))
然后,我们可以使用 De Morgan 定律将合取式中的否定移动到括号外面:
¬p ∨ ((r → q) ∧ (¬r → ¬q)) = ¬p ∨ (¬(r ∧ ¬q) ∧ ¬(¬r ∧ q))
接着,我们可以使用分配律将合取式展开:
¬p ∨ (¬(r ∧ ¬q) ∧ ¬(¬r ∧ q)) = ¬p ∨ ((¬r ∨ q) ∧ (r ∨ ¬q))
最后,我们可以使用主析取范式的定义,将合取式中的两个子句分别作为两个析取式:
¬p ∨ ((¬r ∨ q) ∧ (r ∨ ¬q)) = (¬p ∨ ¬r ∨ q) ∧ (¬p ∨ r ∨ ¬q)
因此,p → ((r → q) ∧ (¬r → ¬q)) 的主析取范式为 (¬p ∨ ¬r ∨ q) ∧ (¬p ∨ r ∨ ¬q)。
阅读全文