import torch import os import numpy as np from tqdm import tqdm import torch.nn as nn import torch.optim as optim import scipy.io as io import time
时间: 2023-08-14 13:55:23 浏览: 331
你好!你的第一个问题是关于导入相关的库和模块。这些代码片段用于导入一些常用的Python库和模块。导入的库和模块包括:
- torch:PyTorch库,用于深度学习。
- os:用于与操作系统进行交互,例如文件和目录的操作。
- numpy:用于处理和操作多维数组和矩阵的库。
- tqdm:用于在循环中显示进度条的库。
- torch.nn:PyTorch中的神经网络模块,包括各种层和损失函数。
- torch.optim:PyTorch中的优化算法模块,用于训练神经网络模型。
- scipy.io:SciPy库中的模块,用于读取和写入各种数据文件格式。
这些库和模块的导入是为了在后续的代码中使用它们的功能和方法。
相关问题
下面代码转化为paddle2.2.2代码 :from __future__ import division import os, time, scipy.io import torch import torch.nn as nn import torch.optim as optim import numpy as np import glob import cv2 import argparse from PIL import Image from skimage.measure import compare_psnr,compare_ssim from tensorboardX import SummaryWriter from models import RViDeNet from utils import * parser = argparse.ArgumentParser(description='Pretrain denoising model') parser.add_argument('--gpu_id', dest='gpu_id', type=int, default=0, help='gpu id') parser.add_argument('--num_epochs', dest='num_epochs', type=int, default=33, help='num_epochs') parser.add_argument('--patch_size', dest='patch_size', type=int, default=128, help='patch_size') parser.add_argument('--batch_size', dest='batch_size', type=int, default=1, help='batch_size') args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id) save_dir = './pretrain_model' if not os.path.isdir(save_dir): os.makedirs(save_dir) gt_paths1 = glob.glob('./data/SRVD_data/raw_clean/MOT17-02_raw/*.tiff') gt_paths2 = glob.glob('./data/SRVD_data/raw_clean/MOT17-09_raw/*.tiff') gt_paths3 = glob.glob('./data/SRVD_data/raw_clean/MOT17-10_raw/*.tiff') gt_paths4 = glob.glob('./data/SRVD_data/raw_clean/MOT17-11_raw/*.tiff') gt_paths = gt_paths1 + gt_paths2 + gt_paths3 + gt_paths4 ps = args.patch_size # patch size for training batch_size = args.batch_size # batch size for training
把原始代码转换为PaddlePaddle 2.2.2 的代码如下:
```python
import os
import time
import argparse
import glob
import cv2
import numpy as np
from PIL import Image
from skimage.measure import compare_psnr, compare_ssim
from tensorboardX import SummaryWriter
from models import RViDeNet
from utils import *
import paddle
from paddle import nn
from paddle.optimizer import optim
paddle.set_device('gpu')
parser = argparse.ArgumentParser(description='Pretrain denoising model')
parser.add_argument('--gpu_id', dest='gpu_id', type=int, default=0, help='gpu id')
parser.add_argument('--num_epochs', dest='num_epochs', type=int, default=33, help='num_epochs')
parser.add_argument('--patch_size', dest='patch_size', type=int, default=128, help='patch_size')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=1, help='batch_size')
args = parser.parse_args()
save_dir = './pretrain_model'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
gt_paths1 = glob.glob('./data/SRVD_data/raw_clean/MOT17-02_raw/*.tiff')
gt_paths2 = glob.glob('./data/SRVD_data/raw_clean/MOT17-09_raw/*.tiff')
gt_paths3 = glob.glob('./data/SRVD_data/raw_clean/MOT17-10_raw/*.tiff')
gt_paths4 = glob.glob('./data/SRVD_data/raw_clean/MOT17-11_raw/*.tiff')
gt_paths = gt_paths1 + gt_paths2 + gt_paths3 + gt_paths4
ps = args.patch_size # patch size for training
batch_size = args.batch_size # batch size for training
num_epochs = args.num_epochs
train_dataset = DatasetDenoising(gt_paths, ps=ps)
train_loader = paddle.io.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
model = RViDeNet()
model.train()
optimizer = optim.Adam(learning_rate=1e-4, parameters=model.parameters())
writer = SummaryWriter()
for epoch in range(num_epochs):
epoch_start_time = time.time()
epoch_loss = 0
for i, (noisy_patches, gt_patches) in enumerate(train_loader()):
noisy_patches = paddle.to_tensor(noisy_patches)
gt_patches = paddle.to_tensor(gt_patches)
output = model(noisy_patches)
loss = nn.functional.mse_loss(output, gt_patches)
optimizer.clear_grad()
loss.backward()
optimizer.step()
epoch_loss += loss
epoch_time = time.time() - epoch_start_time
epoch_loss = epoch_loss / len(train_loader)
print("Epoch [{}/{}] Loss: {:.5f} [{:.2f}s]".format(epoch + 1, num_epochs, epoch_loss, epoch_time))
writer.add_scalar("Loss/train", epoch_loss, epoch + 1)
if (epoch + 1) % 10 == 0:
model_path = os.path.join(save_dir, 'RViDeNet_epoch{}.pdparams'.format(epoch + 1))
paddle.save(model.state_dict(), model_path)
print("Saving model to: {}".format(model_path))
writer.close()
```
帮我生成一个pytorch框架下的三维卷积模型,可以依次输入.mat格式的数据块进行模型训练。
可以使用 PyTorch 中的 nn.Module 来生成三维卷积模型,以下是示例代码:
```
import torch.nn as nn
class Conv3DModel(nn.Module):
def __init__(self):
super(Conv3DModel, self).__init__()
self.conv1 = nn.Conv3d(in_channels=1, out_channels=32, kernel_size=3, stride=1, padding=1)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv3d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.relu2 = nn.ReLU(inplace=True)
self.pool = nn.MaxPool3d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 4 * 4 * 4, 512)
self.relu3 = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.pool(x)
x = x.view(-1, 64 * 4 * 4 * 4)
x = self.fc1(x)
x = self.relu3(x)
x = self.fc2(x)
return x
```
这个示例模型有两个卷积层和两个全连接层。在模型训练时,可以使用 PyTorch 中的 DataLoader 加载 .mat 格式的数据块进行训练,如下所示:
```
import torch.utils.data as data_utils
import numpy as np
import scipy.io
# Load .mat data block
data = scipy.io.loadmat('data.mat')
data = np.array(data['data']).astype(np.float32)
# Create DataLoader for training
batch_size = 32
train_data = data_utils.TensorDataset(torch.from_numpy(data))
train_loader = data_utils.DataLoader(train_data, batch_size=batch_size, shuffle=True)
# Train the model
model = Conv3DModel()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
num_epochs = 10
for epoch in range(num_epochs):
for i, data in enumerate(train_loader, 0):
inputs = data[0]
labels = torch.randint(0, 10, (batch_size,)).long()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
可以根据实际情况修改模型结构、数据加载方式、损失函数等参数,实现自己需要的三维卷积模型训练。
阅读全文
相关推荐
















