import torch import os import numpy as np from tqdm import tqdm import torch.nn as nn import torch.optim as optim import scipy.io as io import time
时间: 2023-08-14 15:55:23 浏览: 304
你好!你的第一个问题是关于导入相关的库和模块。这些代码片段用于导入一些常用的Python库和模块。导入的库和模块包括:
- torch:PyTorch库,用于深度学习。
- os:用于与操作系统进行交互,例如文件和目录的操作。
- numpy:用于处理和操作多维数组和矩阵的库。
- tqdm:用于在循环中显示进度条的库。
- torch.nn:PyTorch中的神经网络模块,包括各种层和损失函数。
- torch.optim:PyTorch中的优化算法模块,用于训练神经网络模型。
- scipy.io:SciPy库中的模块,用于读取和写入各种数据文件格式。
这些库和模块的导入是为了在后续的代码中使用它们的功能和方法。
相关问题
下面代码转化为paddle2.2.2代码 :from __future__ import division import os, time, scipy.io import torch import torch.nn as nn import torch.optim as optim import numpy as np import glob import cv2 import argparse from PIL import Image from skimage.measure import compare_psnr,compare_ssim from tensorboardX import SummaryWriter from models import RViDeNet from utils import * parser = argparse.ArgumentParser(description='Pretrain denoising model') parser.add_argument('--gpu_id', dest='gpu_id', type=int, default=0, help='gpu id') parser.add_argument('--num_epochs', dest='num_epochs', type=int, default=33, help='num_epochs') parser.add_argument('--patch_size', dest='patch_size', type=int, default=128, help='patch_size') parser.add_argument('--batch_size', dest='batch_size', type=int, default=1, help='batch_size') args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id) save_dir = './pretrain_model' if not os.path.isdir(save_dir): os.makedirs(save_dir) gt_paths1 = glob.glob('./data/SRVD_data/raw_clean/MOT17-02_raw/*.tiff') gt_paths2 = glob.glob('./data/SRVD_data/raw_clean/MOT17-09_raw/*.tiff') gt_paths3 = glob.glob('./data/SRVD_data/raw_clean/MOT17-10_raw/*.tiff') gt_paths4 = glob.glob('./data/SRVD_data/raw_clean/MOT17-11_raw/*.tiff') gt_paths = gt_paths1 + gt_paths2 + gt_paths3 + gt_paths4 ps = args.patch_size # patch size for training batch_size = args.batch_size # batch size for training
把原始代码转换为PaddlePaddle 2.2.2 的代码如下:
```python
import os
import time
import argparse
import glob
import cv2
import numpy as np
from PIL import Image
from skimage.measure import compare_psnr, compare_ssim
from tensorboardX import SummaryWriter
from models import RViDeNet
from utils import *
import paddle
from paddle import nn
from paddle.optimizer import optim
paddle.set_device('gpu')
parser = argparse.ArgumentParser(description='Pretrain denoising model')
parser.add_argument('--gpu_id', dest='gpu_id', type=int, default=0, help='gpu id')
parser.add_argument('--num_epochs', dest='num_epochs', type=int, default=33, help='num_epochs')
parser.add_argument('--patch_size', dest='patch_size', type=int, default=128, help='patch_size')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=1, help='batch_size')
args = parser.parse_args()
save_dir = './pretrain_model'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
gt_paths1 = glob.glob('./data/SRVD_data/raw_clean/MOT17-02_raw/*.tiff')
gt_paths2 = glob.glob('./data/SRVD_data/raw_clean/MOT17-09_raw/*.tiff')
gt_paths3 = glob.glob('./data/SRVD_data/raw_clean/MOT17-10_raw/*.tiff')
gt_paths4 = glob.glob('./data/SRVD_data/raw_clean/MOT17-11_raw/*.tiff')
gt_paths = gt_paths1 + gt_paths2 + gt_paths3 + gt_paths4
ps = args.patch_size # patch size for training
batch_size = args.batch_size # batch size for training
num_epochs = args.num_epochs
train_dataset = DatasetDenoising(gt_paths, ps=ps)
train_loader = paddle.io.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
model = RViDeNet()
model.train()
optimizer = optim.Adam(learning_rate=1e-4, parameters=model.parameters())
writer = SummaryWriter()
for epoch in range(num_epochs):
epoch_start_time = time.time()
epoch_loss = 0
for i, (noisy_patches, gt_patches) in enumerate(train_loader()):
noisy_patches = paddle.to_tensor(noisy_patches)
gt_patches = paddle.to_tensor(gt_patches)
output = model(noisy_patches)
loss = nn.functional.mse_loss(output, gt_patches)
optimizer.clear_grad()
loss.backward()
optimizer.step()
epoch_loss += loss
epoch_time = time.time() - epoch_start_time
epoch_loss = epoch_loss / len(train_loader)
print("Epoch [{}/{}] Loss: {:.5f} [{:.2f}s]".format(epoch + 1, num_epochs, epoch_loss, epoch_time))
writer.add_scalar("Loss/train", epoch_loss, epoch + 1)
if (epoch + 1) % 10 == 0:
model_path = os.path.join(save_dir, 'RViDeNet_epoch{}.pdparams'.format(epoch + 1))
paddle.save(model.state_dict(), model_path)
print("Saving model to: {}".format(model_path))
writer.close()
```
●使用numpy或pytorch实现logistic回归(即最简单的神经网络回归)。 ●回归问题:拟合数据: (选取合适的区间) ●分类问题:生成随机样本点,采用标准数据集。使用scipy中的curvefit
在Python中,使用NumPy和PyTorch实现 logistic 回归可以分为两个部分:回归问题和分类问题。
**1. Logistic回归(回归问题):**
首先,我们需要导入必要的库并创建一个简单的线性模型,因为Logistic回归本质上是一种线性模型加上sigmoid激活函数来进行概率预测:
```python
import numpy as np
from sklearn.linear_model import LogisticRegression
# 创建简单数据集
x = np.linspace(-5, 5, 100).reshape(-1, 1)
y = 1 / (1 + np.exp(-x))
# 使用NumPy训练回归模型(实际上这不是真正的logistic回归,而是线性回归)
# 因为这里使用的是numpy,我们通常不会直接用它做机器学习任务,但演示一下如何构造数据
model_reg = LogisticRegression(solver='liblinear') # 使用liblinear求解,适用于小规模数据
model_reg.fit(x, y)
```
**2. Logistic回归(分类问题):**
然后我们可以模拟一个分类问题,生成随机样本点,并使用Scipy库中的`curve_fit`来拟合数据:
```python
from scipy.optimize import curve_fit
import torch
import torch.nn as nn
import torch.optim as optim
# 生成分类数据(假设为二维正态分布)
def generate_classification_data(num_samples):
mean = [0, 0]
cov = [[1, 0], [0, 1]] # 简单的二维正交协方差矩阵
x_data, y_data = np.random.multivariate_normal(mean, cov, num_samples).T
return torch.tensor(x_data, dtype=torch.float), torch.tensor(y_data, dtype=torch.long)
x_train, y_train = generate_classification_data(1000)
model_class = nn.Linear(2, 1) # 二分类,输入维度2,输出维度1
criterion = nn.BCEWithLogitsLoss() # 对数似然损失
optimizer = optim.SGD(model_class.parameters(), lr=0.01)
# 使用PyTorch训练分类模型
for epoch in range(100): # 进行一轮训练
optimizer.zero_grad()
predictions = model_class(x_train)
loss = criterion(predictions, y_train.view(-1, 1))
loss.backward()
optimizer.step()
```
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20250102104920.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)