function res_angle = iterFourier(varargin) %IFTA Iterative Fourier Transform Algorithm 迭代傅里叶算法 % H = iterFourier(A) 对图像A进行30次FFT迭代运算,返回纯相位矩阵 % H = iterFourier(A, N) 对图像A进行N次FFT迭代运算,返回纯相位矩阵 % H = iterFourier(A, N, ERR) 对图像A进行N次FFF迭代运算,返回纯相位矩阵 % 当误差小于设定值ERR 则结束迭代 % % A - M×N的灰度图矩阵 % N - 是迭代次数 % ERR - 是误差阈值 % % H - 返回全息图相位 % if nargin > 0 [varargin{:}] = convertStringsToChars(varargin{:}); end [data, n_iter, err] = parse_inputs(varargin{:}); if (isempty(err)) err = 0; end data = double(data); [heigh_Pixel, width_Pixel] = size(data); I = data ./ max(max(data)); InitPhase = -pi + (pi + pi) * rand(heigh_Pixel, width_Pixel); I1 = I .* exp(1j * InitPhase); avg1=mean(mean(abs(I1))); handle = waitbar(0,'0 %','Name','Computing...'); for n = 1 : 1 : n_iter H = fft2(I1); I2 = ifft2(exp(1j .* angle(H))); avg2=mean(mean(abs(I2))); I2=(I2./avg2).avg1; rmse = (mean(mean((abs(I2)-abs(I)).^2)))^0.5; if (rmse <= err) break; end I1 = fftshift(I) . exp(1j .* angle(I2)); value = n/n_iter; waitbar(n/n_iter, handle, sprintf('%0.0f %%', value100)); end close(handle); res_angle = mod(angle(H), 2pi); end % Function parse_inputs function [data, n_iter, err] = parse_inputs(varargin) data = []; n_iter = 30; err = 0.0; if (nargin < 1 || nargin > 4) error('函数参数个数错误'); end if (size(varargin{1}, 3) > 1) error('输入不是灰度图像'); end if (nargin == 1) data = varargin{1}; end if (nargin == 2) data = varargin{1}; n_iter = varargin{2}; end if (nargin == 3) data = varargin{1}; n_iter = varargin{2}; err = varargin{3}; end end 怎么让最后的重构图与原始图对比一模一样

时间: 2024-04-05 18:29:03 浏览: 11
要让最后的重构图与原始图对比一模一样,需要保证在迭代过程中误差不断减小,直到达到设定的误差阈值。可以尝试以下几点来优化代码: 1. 修改迭代次数n_iter和误差阈值err的值,通过增加迭代次数和减小误差阈值来提高重构图像的精度。 2. 在计算重构图像时,可以将最终的全息图相位mod 2pi,保证相位在[0, 2pi]之间。 3. 在计算重构图像时,可以对每一次迭代得到的图像进行归一化处理,保证图像的幅值在[0, 1]之间。 4. 为了避免噪声的干扰,可以对原始图像进行平滑处理,例如高斯滤波。
相关问题

function res_angle = iterFourier(varargin) %IFTA Iterative Fourier Transform Algorithm 迭代傅里叶算法 % H = iterFourier(A) 对图像A进行30次FFT迭代运算,返回纯相位矩阵 % H = iterFourier(A, N) 对图像A进行N次FFT迭代运算,返回纯相位矩阵 % H = iterFourier(A, N, ERR) 对图像A进行N次FFF迭代运算,返回纯相位矩阵 % 当误差小于设定值ERR 则结束迭代 % % A - M×N的灰度图矩阵 % N - 是迭代次数 % ERR - 是误差阈值 % % H - 返回全息图相位 % if nargin > 0 [varargin{:}] = convertStringsToChars(varargin{:}); end [data, n_iter, err] = parse_inputs(varargin{:}); if (isempty(err)) err = 0; end data = double(data); [heigh_Pixel, width_Pixel] = size(data); I = data ./ max(max(data)); InitPhase = -pi + (pi + pi) * rand(heigh_Pixel, width_Pixel); I1 = I .* exp(1j * InitPhase); avg1=mean(mean(abs(I1))); handle = waitbar(0,'0 %','Name','Computing...'); for n = 1 : 1 : n_iter H = fft2(I1); I2 = ifft2(exp(1j .* angle(H))); avg2=mean(mean(abs(I2))); I2=(I2./avg2).*avg1; rmse = (mean(mean((abs(I2)-abs(I)).^2)))^0.5; if (rmse <= err) break; end I1 = fftshift(I) .* exp(1j .* angle(I2)); value = n/n_iter; waitbar(n/n_iter, handle, sprintf('%0.0f %%', value*100)); end close(handle); res_angle = mod(angle(H), 2*pi); end % Function parse_inputs function [data, n_iter, err] = parse_inputs(varargin) data = []; n_iter = 30; err = 0.0; if (nargin < 1 || nargin > 4) error('函数参数个数错误'); end if (size(varargin{1}, 3) > 1) error('输入不是灰度图像'); end if (nargin == 1) data = varargin{1}; end if (nargin == 2) data = varargin{1}; n_iter = varargin{2}; end if (nargin == 3) data = varargin{1}; n_iter = varargin{2}; err = varargin{3}; end end 怎么让最后的重构图与原始图一致

在迭代傅里叶变换算法中,重构图与原始图不一致可能是因为在进行傅里叶变换时没有正确处理图像的中心位置。可以尝试在代码中添加以下步骤,以确保重构图与原始图一致: 1. 在进行傅里叶变换之前,调用 `fftshift()` 函数将图像的中心移动到左上角。 2. 在进行傅里叶逆变换之前,调用 `ifftshift()` 函数将频域数据的中心移动回到频域的中心位置。 修改后的代码如下: ``` function res_angle = iterFourier(varargin) %IFTA Iterative Fourier Transform Algorithm 迭代傅里叶算法 % H = iterFourier(A) 对图像A进行30次FFT迭代运算,返回纯相位矩阵 % H = iterFourier(A, N) 对图像A进行N次FFT迭代运算,返回纯相位矩阵 % H = iterFourier(A, N, ERR) 对图像A进行N次FFF迭代运算,返回纯相位矩阵 % 当误差小于设定值ERR 则结束迭代 % % A - M×N的灰度图矩阵 % N - 是迭代次数 % ERR - 是误差阈值 % % H - 返回全息图相位 if nargin > 0 [varargin{:}] = convertStringsToChars(varargin{:}); end [data, n_iter, err] = parse_inputs(varargin{:}); if (isempty(err)) err = 0; end data = double(data); [heigh_Pixel, width_Pixel] = size(data); I = data ./ max(max(data)); InitPhase = -pi + (pi + pi) * rand(heigh_Pixel, width_Pixel); I1 = I .* exp(1j * InitPhase); avg1 = mean(mean(abs(I1))); handle = waitbar(0,'0 %','Name','Computing...'); for n = 1 : 1 : n_iter H = fftshift(fft2(ifftshift(I1))); % 移动图像中心,进行傅里叶变换 I2 = ifftshift(ifft2(exp(1j .* angle(H)))); % 移动频域数据中心,进行傅里叶逆变换 avg2 = mean(mean(abs(I2))); I2 = (I2./avg2).*avg1; rmse = (mean(mean((abs(I2)-abs(I)).^2)))^0.5; if (rmse <= err) break; end I1 = I .* exp(1j .* angle(fftshift(H))); % 移动图像中心 value = n/n_iter; waitbar(n/n_iter, handle, sprintf('%0.0f %%', value*100)); end close(handle); res_angle = mod(angle(H), 2*pi); end % Function parse_inputs function [data, n_iter, err] = parse_inputs(varargin) data = []; n_iter = 30; err = 0.0; if (nargin < 1 || nargin > 4) error('函数参数个数错误'); end if (size(varargin{1}, 3) > 1) error('输入不是灰度图像'); end if (nargin == 1) data = varargin{1}; end if (nargin == 2) data = varargin{1}; n_iter = varargin{2}; end if (nargin == 3) data = varargin{1}; n_iter = varargin{2}; err = varargin{3}; end end ``` 在修改后的代码中,`fftshift()` 函数和 `ifftshift()` 函数被用来移动图像和频域数据的中心位置。这样,在进行傅里叶变换和傅里叶逆变换时,就可以保证图像和频域数据的中心位置正确,从而得到一致的重构图和原始图。

function img_GUI_OpeningFcn(hObject, eventdata, handles, varargin) handles.output = hObject; % Update handles structure guidata(hObject, handles);

这是一个 MATLAB GUI 中的回调函数,名为 `img_GUI_OpeningFcn`,它是在 GUI 界面打开时自动调用的。下面是对这个函数中的每一行代码的解释: ``` function img_GUI_OpeningFcn(hObject, eventdata, handles, varargin) ``` 这是函数的定义部分,其中 `hObject` 是指向 GUI 对象的句柄,`eventdata` 是 MATLAB 自动生成的事件数据,`handles` 是一个结构体,用于存储 GUI 中的对象和数据,`varargin` 是一个可选输入参数列表。 ``` handles.output = hObject; ``` 这一行将 `handles.output` 设置为 GUI 对象的句柄,以便其他函数可以访问它。 ``` guidata(hObject, handles); ``` 这一行将 `handles` 结构体保存在 GUI 对象的句柄中,以便在其他回调函数中可以访问它。

相关推荐

最新推荐

recommend-type

华为OD机试C卷- 快速人名查找(Java & JS & Python).md-私信看全套OD代码及解析

私信博主免费看所有华为OD真题、考试报告、手撕代码、面试记录
recommend-type

Navicat的下载、安装、配置连接与使用教程.docx

Navicat的下载、安装、配置连接与使用教程.docx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差

![MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差](https://site.cdn.mengte.online/official/2021/11/20211128213137293.png) # 1. 正态分布概述 正态分布,又称高斯分布,是统计学中最重要的连续概率分布之一。它广泛应用于自然科学、社会科学和工程领域。 正态分布的概率密度函数为: ``` f(x) = (1 / (σ√(2π))) * exp(-(x - μ)² / (2σ²)) ``` 其中: - μ:正态分布的均值 - σ:正态分布的标准差 - π:圆周率 正态分布具有以下特性: - 对称性:
recommend-type

我正在开发一款个人碳足迹计算app,如何撰写其需求分析文档,请给我一个范例

为了更全面、清晰地定义个人碳足迹计算app的需求,需求分析文档应该包含以下内容: 1.项目简介:对该app项目的概述及目标进行说明。 2.用户分析:包括目标用户群、用户需求、行为等。 3.功能需求:对app的基本功能进行定义,如用户登录、数据录入、数据统计等。 4.非功能需求:对使用app的性能和质量等进行定义,如界面设计、数据安全、可扩展性等。 5.运行环境:包括app的开发环境和使用环境。 下面是一个范例: 需求分析文档 1. 项目简介 该app项目旨在为用户提供一款方便、易用、可定制的个人碳足迹计算平台,以促进环保和可持续性发展。 2. 用户分析 目标用户群:全球关
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB正态分布相关性分析:探索正态分布变量之间的关联

![MATLAB正态分布相关性分析:探索正态分布变量之间的关联](https://img-blog.csdnimg.cn/bd5a45b8a6e94357b7af2409fa3131ab.png) # 1. MATLAB中正态分布的理论基础 正态分布,又称高斯分布,是一种常见的概率分布,其概率密度函数为: ``` f(x) = (1 / (σ√(2π))) * e^(-(x-μ)² / (2σ²)) ``` 其中,μ表示正态分布的均值,σ表示标准差。正态分布具有以下特点: - **对称性:**正态分布的概率密度函数关于均值μ对称。 - **钟形曲线:**正态分布的概率密度函数呈钟形曲线
recommend-type

我现在需要学习基于opencv和mediapipe并且是python的手势识别,我该如何系统的学习呢

你可以先了解一下opencv和mediapipe的基本使用方法和常见功能,然后学习手势识别的算法和方法。具体学习的过程可以包括以下步骤: 1. 学习opencv的基本操作,例如读取、保存、处理图像的方法,以及如何进行图像的降噪、二值化、边缘检测等操作。 2. 学习mediapipe的使用方法,了解如何使用它进行姿势估计和手部检测。 3. 学习手势识别的算法和方法,了解如何识别手部的姿势和手势动作,并进行分类和识别。 4. 进行实践,尝试编写基于opencv和mediapipe的手势识别代码,对不同类型的手势进行识别和分类。 5. 继续学习和研究,扩展自己的知识和技能,探索更深入和复杂