c是一个字典,存的是array类型的数组,但是这么写为什么报错k = np.concatenate((c[i].reshape(-1,1) for i in range(len(l)-2)) , axis=1)。报错的信息是TypeError: The first input argument needs to be a sequence
时间: 2023-06-01 14:01:53 浏览: 176
的 arrays, but <class 'generator'> was given. 这是因为这个写法中使用了生成器表达式 (generator expression)。生成器表达式和列表推导式 (list comprehension) 很像,但是不会创建一个完整的列表,而是一个生成器对象,只有在需要的时候才会计算出下一个值。而在这里,np.concatenate() 函数需要的是一个序列 (sequence) 的数组,而不是一个生成器对象。解决方法是将生成器表达式改为列表推导式,即将圆括号改为方括号:k = np.concatenate([c[i].reshape(-1,1) for i in range(len(l)-2)] , axis=1)。
相关问题
if self.opt.dense_wh: hm_a = hm.max(axis=0, keepdims=True) dense_wh_mask = np.concatenate([hm_a, hm_a], axis=0) ret.update({'dense_wh': dense_wh, 'dense_wh_mask': dense_wh_mask}) del ret['wh'] elif self.opt.cat_spec_wh: ret.update({'cat_spec_wh': cat_spec_wh, 'cat_spec_mask': cat_spec_mask}) del ret['wh'] if self.opt.reg_offset: ret.update({'reg': reg})##把reg加进去 if self.opt.debug > 0 or not self.split == 'train': gt_det = np.array(gt_det, dtype=np.float32) if len(gt_det) > 0 else \ np.zeros((1, 6), dtype=np.float32) meta = {'c': c, 's': s, 'gt_det': gt_det, 'img_id': img_id} ret['meta'] = meta return ret
这段代码是Python中的一个函数,它接受一个名为`self`的对象和一些其他参数。函数的主要目的是根据一些条件更新一个字典`ret`,然后将其返回。
在代码中,首先检查了`self.opt.dense_wh`的值。如果为真,那么将通过计算数组`hm`的最大值来生成一个新的数组`hm_a`。然后将`hm_a`与自身连接起来,构成一个形状为(2,H,W)的数组`dense_wh_mask`。接下来,将字典`ret`更新为包含键值对`'dense_wh': dense_wh`和`'dense_wh_mask': dense_wh_mask`,并从`ret`中删除键为'wh'的项。
如果`self.opt.dense_wh`为假,那么会检查`self.opt.cat_spec_wh`的值。如果为真,则将字典`ret`更新为包含键值对`'cat_spec_wh': cat_spec_wh`和`'cat_spec_mask': cat_spec_mask`,并从`ret`中删除键为'wh'的项。
接下来,如果`self.opt.reg_offset`为真,则将字典`ret`更新为包含键为'reg'和值为`reg`的项。
最后,如果满足条件`self.opt.debug > 0 or not self.split == 'train'`,则将列表`gt_det`转换为浮点数类型的NumPy数组,并将其存储在变量`gt_det`中。否则,将创建一个形状为(1,6)的全零浮点数数组`gt_det`。
然后,将一个包含一些其他元数据的字典`meta`创建为变量`meta`。最后,将字典`ret`更新为包含键值对`'meta': meta`,并将其返回。
代码解释:with open(os.path.join(os.path.dirname(__file__), 'Config.json'), 'r') as json_file: config = json.load(json_file) shots = {'train': config['shots']['train'], 'val': config['shots']['val'], 'test': config['shots']['test']} directory = config['directory'] result = {str(i): np.array([]) for i in range(6)} files = os.listdir(directory) for file in files: try: print(file) shot = shots[file] shot = list(eval(shot)) for st in shot: f = h5py.File(os.path.join(directory, file, '{}.hdf5'.format(st)), 'r') dataset = f.get('diagnosis') data = dataset[:] for i in range(6): result['{}'.format(i)] = np.concatenate((result['{}'.format(i)], data[i])) except Exception as e: print(e)
这段代码的主要作用是读取一个JSON格式的配置文件,然后从配置文件中获取一些参数值,最后遍历指定目录下的所有文件,打开每个文件中的数据集,并将其中的数据按照一定的规则存储到一个名为`result`的字典对象中。
具体来说,代码首先通过`open()`函数打开了一个名为`Config.json`的配置文件,并通过`json.load()`函数将其解析成一个Python字典对象`config`,其中包含了一些参数的取值。然后,从`config`字典中获取了三个键值对,分别是`'shots'`、`'directory'`和`'result'`。其中,`'shots'`是一个字典,包含了三个键值对,分别是`'train'`、`'val'`和`'test'`,对应训练集、验证集和测试集的样本数量;`'directory'`是一个字符串,表示要读取的数据文件所在的目录路径;`'result'`是一个字典,用于存储处理后的数据。接下来,代码使用`os.listdir()`函数列出了指定目录下的所有文件和子目录的名称,并将其存储到`files`列表中。
然后,代码使用一个`for`循环遍历`files`列表中的每个文件名。在每次循环中,代码首先尝试从`shots`字典中获取当前文件名对应的样本数量`shot`,对其进行了一些处理,然后遍历`shot`列表中的每个元素,依次打开对应的数据文件,并从中读取出名为`diagnosis`的数据集。接着,代码使用一个`for`循环遍历数据集中的每一行,将其中的数据按照一定的规则存储到`result`字典中。具体来说,`result`字典是一个包含6个键值对的字典,其中每个键对应一个长度为0的Numpy数组,表示当前处理的数据。在每次循环中,代码将数据集中第`i`行的数据存储到`result`字典中第`i`个键对应的Numpy数组中,并使用`np.concatenate()`函数将其与之前存储的数据拼接起来。
最后,如果在处理过程中发生了任何异常,代码将打印该异常的信息。
阅读全文