代码解释: # Input img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection

时间: 2024-05-18 07:14:44 浏览: 9
这段代码是用来创建输入图片的张量。首先使用 `torch.zeros` 函数创建一个全零张量,张量的维度是 `(opt.batch_size, 3, *opt.img_size)`,其中 `opt.batch_size` 是批量大小,`3` 是图片的通道数(RGB),`*opt.img_size` 中的星号表示 `opt.img_size` 是一个可变长度的序列。接着使用 `to` 方法将张量移动到指定的设备上,即 `device` 变量指定的设备。最终,这段代码返回创建好的输入图片的张量。
相关问题

Traceback (most recent call last): File "E:\Anaconda\Test2-YOLOv3\yolov3-9.5.0\train.py", line 543, in <module> train(hyp, opt, device, tb_writer) File "E:\Anaconda\Test2-YOLOv3\yolov3-9.5.0\train.py", line 304, in train loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size File "E:\Anaconda\Test2-YOLOv3\yolov3-9.5.0\utils\loss.py", line 117, in __call__ tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets File "E:\Anaconda\Test2-YOLOv3\yolov3-9.5.0\utils\loss.py", line 197, in build_targets offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] IndexError: The shape of the mask [5, 14] at index 0 does not match the shape of the indexed tensor [1, 14, 2] at index 0

这是一个错误信息的提示,显示在 "E:\Anaconda\Test2-YOLOv3\yolov3-9.5.0\train.py" 的代码文件中的第 543 行中发生了错误,错误的类型为最近的错误跟踪,即 Traceback。这个错误信息是在一个叫 train 的函数中出现的,原因是在该函数中调用了 compute_loss 函数,导致出现了 loss 和 loss_items 的错误。同时,targets.to(device) 也出现了错误。

yolov7train.py详解

yolov7train.py 是使用 YOLOv7 算法进行目标检测的训练脚本。下面对 yolov7train.py 的主要代码进行简单的解释: 1. 导入相关库 ```python import argparse import yaml import time import torch from torch.utils.data import DataLoader from torchvision import datasets from models.yolov7 import Model from utils.datasets import ImageFolder from utils.general import ( check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer, set_logging) from utils.torch_utils import ( select_device, time_synchronized, load_classifier, model_info) ``` 这里导入了 argparse 用于解析命令行参数,yaml 用于解析配置文件,time 用于记录时间,torch 用于神经网络训练,DataLoader 用于读取数据集,datasets 和 ImageFolder 用于加载数据集,Model 用于定义 YOLOv7 模型,各种工具函数用于辅助训练。 2. 定义命令行参数 ```python parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default='data.yaml', help='dataset.yaml path') parser.add_argument('--hyp', type=str, default='hyp.yaml', help='hyperparameters path') parser.add_argument('--epochs', type=int, default=300) parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes') parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', nargs='?', const='yolov7.pt', default=False, help='resume most recent training') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') parser.add_argument('--notest', action='store_true', help='only test final epoch') parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') opt = parser.parse_args() ``` 这里定义了许多命令行参数,包括数据集路径、超参数路径、训练轮数、批量大小、图片大小、是否使用矩形训练、是否从最近的检查点恢复训练、是否只保存最终的检查点、是否只测试最终的模型、是否进行超参数进化、gsutil 存储桶等。 3. 加载数据集 ```python with open(opt.data) as f: data_dict = yaml.load(f, Loader=yaml.FullLoader) train_path = data_dict['train'] test_path = data_dict['test'] num_classes = data_dict['nc'] names = data_dict['names'] train_dataset = ImageFolder(train_path, img_size=opt.img_size[0], rect=opt.rect) test_dataset = ImageFolder(test_path, img_size=opt.img_size[1], rect=True) batch_size = opt.batch_size train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True, collate_fn=train_dataset.collate_fn) test_dataloader = DataLoader(test_dataset, batch_size=batch_size * 2, num_workers=8, pin_memory=True, collate_fn=test_dataset.collate_fn) ``` 这里读取了数据集的配置文件,包括训练集、测试集、类别数和类别名称等信息。然后使用 ImageFolder 加载数据集,设置图片大小和是否使用矩形训练。最后使用 DataLoader 加载数据集,并设置批量大小、是否 shuffle、是否使用 pin_memory 等参数。 4. 定义 YOLOv7 模型 ```python model = Model(opt.hyp, num_classes, opt.img_size) model.nc = num_classes device = select_device(opt.device, batch_size=batch_size) model.to(device).train() criterion = model.loss optimizer = torch.optim.SGD(model.parameters(), lr=hyp['lr0'], momentum=hyp['momentum'], weight_decay=hyp['weight_decay']) scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=1, T_mult=2) start_epoch = 0 best_fitness = 0.0 ``` 这里使用 Model 类定义了 YOLOv7 模型,并将其放到指定设备上进行训练。使用交叉熵损失函数作为模型的损失函数,使用 SGD 优化器进行训练,并使用余弦退火学习率调整策略。定义了起始轮数、最佳精度等变量。 5. 开始训练 ```python for epoch in range(start_epoch, opt.epochs): model.train() mloss = torch.zeros(4).to(device) # mean losses for i, (imgs, targets, paths, _) in enumerate(train_dataloader): ni = i + len(train_dataloader) * epoch # number integrated batches (since train start) imgs = imgs.to(device) targets = targets.to(device) loss, _, _ = model(imgs, targets) loss.backward() optimizer.step() optimizer.zero_grad() mloss = (mloss * i + loss.detach().cpu()) / (i + 1) # update mean losses # Print batch results if ni % 20 == 0: print(f'Epoch {epoch}/{opt.epochs - 1}, Batch {i}/{len(train_dataloader) - 1}, lr={optimizer.param_groups[0]["lr"]:.6f}, loss={mloss[0]:.4f}') # Update scheduler scheduler.step() # Update Best fitness with torch.no_grad(): fitness = model_fitness(model) if fitness > best_fitness: best_fitness = fitness # Save checkpoint if (not opt.nosave) or (epoch == opt.epochs - 1): ckpt = { 'epoch': epoch, 'best_fitness': best_fitness, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict() } torch.save(ckpt, f'checkpoints/yolov7_epoch{epoch}.pt') # Test if not opt.notest: t = time_synchronized() model.eval() for j, (imgs, targets, paths, shapes) in enumerate(test_dataloader): if j == 0: pred = model(imgs.to(device)) pred = non_max_suppression(pred, conf_thres=0.001, iou_thres=0.6) else: break t1 = time_synchronized() if isinstance(pred, int) or isinstance(pred, tuple): print(f'Epoch {epoch}/{opt.epochs - 1}, test_loss={mloss[0]:.4f}, test_mAP={0.0}') else: pred = pred[0].cpu() iou_thres = 0.5 niou = [iou_thres] * num_classes ap, p, r = ap_per_class(pred, targets, shapes, iou_thres=niou) mp, mr, map50, f1, _, _ = stats(ap, p, r, gt=targets) print(f'Epoch {epoch}/{opt.epochs - 1}, test_loss={mloss[0]:.4f}, test_mAP={map50:.2f} ({mr*100:.1f}/{mp*100:.1f})') # Plot images if epoch == 0 and j == 0: for i, det in enumerate(pred): # detections per image img = cv2.imread(paths[i]) # BGR img = plot_results(img, det, class_names=names) cv2.imwrite(f'runs/test{i}.jpg', img) if i == 3: break ``` 这里进行了多个 epoch 的训练。在每个 epoch 中,对于每个批量的数据,先将数据移动到指定设备上,然后计算模型的损失函数,并进行反向传播和梯度下降。在每个 epoch 结束时,更新学习率调整策略和最佳精度,保存当前的检查点。如果 opt.notest 为 False,则进行测试,并输出测试结果。最后,如果是第一个 epoch,则绘制部分图像用于可视化。

相关推荐

最新推荐

recommend-type

chromedriver-win64_121.0.6123.0.zip

chromedriver-win64_121.0.6123.0.zip
recommend-type

Chekiang Shu Ke Sung-mianfeiziti字體下載

Chekiang Shu Ke Sung-mianfeiziti字體下載
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力

![MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力](https://img-blog.csdnimg.cn/img_convert/3aa5d0402a313c17c3c9ffa85b40f683.png) # 1. MATLAB图像去噪概述 **1.1 图像去噪的重要性** 图像去噪是图像处理中一项至关重要的任务,它旨在从图像中去除不需要的噪声,从而提高图像的质量和可理解性。图像噪声可能来自各种来源,如传感器缺陷、环境干扰和数据传输错误。 **1.2 MATLAB图像去噪的优势** MATLAB是一个强大的技术计算环境,提供了一系列图像去噪算法和工具。MATLA
recommend-type

使用pyrhon编写mapreduce

MapReduce是一种用于处理大规模数据集的编程模型和算法。它通常用于分布式计算环境中,可以高效地处理大量数据并实现并行计算。在Python中,我们可以使用Hadoop Streaming来编写MapReduce程序。 下面是使用Python编写MapReduce的基本步骤: 1. Map阶段: - 编写一个mapper函数,该函数接收输入数据并将其转换为键值对的形式。 - 使用标准输入(sys.stdin)读取输入数据,并使用标准输出(sys.stdout)输出键值对。 2. Reduce阶段: - 编写一个reducer函数,该函数接收来自mapper函数输出的键