torch.cuda.Stream()作用

时间: 2023-09-11 15:04:24 浏览: 61
`torch.cuda.Stream()` 是PyTorch中用于管理CUDA异步操作的对象。它提供了一种分离CUDA流的方法,允许在多个流之间并行执行多个CUDA操作,从而提高了GPU的利用率。 使用 `cuda.Stream()` 可以创建一个新的流对象。可以使用 `with torch.cuda.stream(stream)` 来指定一个 CUDA 操作使用的流。在这个上下文环境中,所有的 CUDA 操作都将被分配到指定的流中执行。 例如,如果需要在GPU上执行多个异步操作,可以创建多个流对象,并将这些操作分配给不同的流。这样可以最大限度地利用GPU的计算资源,提高程序的性能。 ```python import torch # 创建两个流 stream1 = torch.cuda.Stream() stream2 = torch.cuda.Stream() # 在两个流中并行执行两个操作 with torch.cuda.stream(stream1): x = torch.randn((1000, 1000), device='cuda') y = x * 2 with torch.cuda.stream(stream2): z = torch.randn((1000, 1000), device='cuda') w = z * 2 # 在主流中等待两个操作完成 torch.cuda.synchronize() ```
相关问题

torch.cuda.stream()

torch.cuda.stream() 是 PyTorch 中用于创建 CUDA Stream 的函数。CUDA Stream 可以让 GPU 并行执行多个任务,从而提高计算速度和效率。使用 CUDA Stream 可以有效地避免线程的阻塞等待,从而最大化利用GPU的计算能力。

python 多线程编程中,循环创建多个子线程绑定gpu失败,如何利用torch.cuda.set_device、torch.tensor([1.0]).cuda()、torch.cuda.stream(stream)、with torch.cuda.device(0)解决,代码示例

在 Python 多线程编程中,循环创建多个子线程并绑定 GPU 可能会导致失败。为了解决这个问题,可以利用 `torch.cuda.set_device()`、`torch.tensor([1.0]).cuda()`、`torch.cuda.stream(stream)` 和 `with torch.cuda.device(0)` 的组合来确保每个子线程正确绑定 GPU。以下是一个示例代码: ```python import torch import threading def worker(): # 在子线程中设置要使用的 GPU 设备 torch.cuda.set_device(torch.cuda.current_device()) # 在子线程中创建新的 CUDA 流 stream = torch.cuda.stream() with torch.cuda.stream(stream): # 在子线程中进行 GPU 相关的操作 x = torch.tensor([1.0]).cuda() # 其他 GPU 相关操作... # 创建多个子线程并启动 num_threads = 4 threads = [] for _ in range(num_threads): thread = threading.Thread(target=worker) thread.start() threads.append(thread) # 等待所有子线程结束 for thread in threads: thread.join() ``` 在这个示例中,我们循环创建了多个子线程,并在每个子线程中使用 `torch.cuda.set_device(torch.cuda.current_device())` 设置要使用的 GPU 设备。然后,我们在每个子线程中创建了一个新的 CUDA 流,并使用 `with torch.cuda.stream(stream):` 将相关操作放入该流中执行。在子线程中,我们可以使用 `torch.tensor([1.0]).cuda()` 将张量移动到 GPU 上。 通过这种方式,每个子线程都能够正确地绑定 GPU,并且可以在子线程中进行其他的 GPU 相关操作。确保在多线程环境下正确管理 CUDA 上下文,以避免资源冲突和泄漏的问题。

相关推荐

import numpy as np import tensorrt as trt import pycuda.driver as cuda import pycuda.autoinit import time import torch # 1. 确定batch size大小,与导出的trt模型保持一致 BATCH_SIZE = 32 # 2. 选择是否采用FP16精度,与导出的trt模型保持一致 USE_FP16 = True target_dtype = np.float16 if USE_FP16 else np.float32 # 3. 创建Runtime,加载TRT引擎 f = open("resnet_engine.trt", "rb") # 读取trt模型 runtime = trt.Runtime(trt.Logger(trt.Logger.WARNING)) # 创建一个Runtime(传入记录器Logger) engine = runtime.deserialize_cuda_engine(f.read()) # 从文件中加载trt引擎 context = engine.create_execution_context() # 创建context # 4. 分配input和output内存 input_batch = np.random.randn(BATCH_SIZE, 224, 224, 3).astype(target_dtype) output = np.empty([BATCH_SIZE, 1000], dtype = target_dtype) d_input = cuda.mem_alloc(1 * input_batch.nbytes) d_output = cuda.mem_alloc(1 * output.nbytes) bindings = [int(d_input), int(d_output)] stream = cuda.Stream() # 5. 创建predict函数 def predict(batch): # result gets copied into output # transfer input data to device cuda.memcpy_htod_async(d_input, batch, stream) # execute model context.execute_async_v2(bindings, stream.handle, None) # 此处采用异步推理。如果想要同步推理,需将execute_async_v2替换成execute_v2 # transfer predictions back cuda.memcpy_dtoh_async(output, d_output, stream) # syncronize threads stream.synchronize() return output # 6. 调用predict函数进行推理,并记录推理时间 def preprocess_input(input): # input_batch无法直接传给模型,还需要做一定的预处理 # 此处可以添加一些其它的预处理操作(如标准化、归一化等) result = torch.from_numpy(input).transpose(0,2).transpose(1,2) # 利用torch中的transpose,使(224,224,3)——>(3,224,224) return np.array(result, dtype=target_dtype) preprocessed_inputs = np.array([preprocess_input(input) for input in input_batch]) # (BATCH_SIZE,224,224,3)——>(BATCH_SIZE,3,224,224) print("Warming up...") pred = predict(preprocessed_inputs) print("Done warming up!") t0 = time.time() pred = predict(preprocessed_inputs) t = time.time() - t0 print("Prediction cost {:.4f}s".format(t)) 请将这部分代码,改成可以输入电脑摄像头视频的

最新推荐

recommend-type

Toxi / Oxy Pro 便携式气体检测仪参考手册 使用说明书

Toxi Oxy Pro 便携式气体检测仪参考手册 使用说明书
recommend-type

科傻模拟网优化操作-教程书

官方的的说明书资料,部分视频说明在这里: https://www.bilibili.com/video/BV1Fz4y1d7rn/?spm_id_from=333.999.0.0&vd_source=13dc65dbb4ac9127d9af36e7b281220e
recommend-type

node-v8.14.0-x64.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

2023商业银行数据资产体系白皮书,主要介绍了“三位一体”数据资产体系的构成与工作机制,以及商业银行数据资产体系建设实践

2023商业银行数据资产体系白皮书 目录 第 1 章 数据资产化与数据要素市场化相辅相成,相互促进 第 2 章 数据资产化是企业数据治理向上演进的必经之路 第 3 章 数据资产体系发展概述 第 4 章 “三位一体”数据资产体系的构思 4.1“三位一体”数据资产体系的构成与工作机制 数据资产管理 数据资产运营 数据资产评价 数据资产体系工作机制 4.2“三位一体”数据资产体系的相互作用关系 4.3“三位一体”数据资产体系的构建 4.4“三位一体”数据资产体系的优势 第 5 章 商业银行数据资产体系建设实践 5.1商业银行开展数据资产体系建设的背景和目标 5.2商业银行数据资产体系建设的工作步骤 5.3上海银行数据资产体系建设实践的主要成果 第 6 章 数据要素流通市场赋能企业数据资产化 6.1全国多层次数据要素市场的建设 6.2上海数据交易所赋能企业数据资产化 6.3数据要素流通交易市场赋能企业数据资产化的展望 第 7 章 未来演进与展望
recommend-type

基于微信小程序的助农扶贫小程序

大学生毕业设计、大学生课程设计作业
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。