data_train = pd.read_csv('books_train.csv') data_test = pd.read_csv('books_test.csv') data = data_train.append(data_test,ignore_index=True)
时间: 2023-09-14 15:10:10 浏览: 76
这段代码的作用是将两个 CSV 文件中的数据合并为一个数据集,并忽略原始数据中的索引。其中,第一行代码读取了名为 "books_train.csv" 的 CSV 文件中的数据,第二行代码读取了名为 "books_test.csv" 的 CSV 文件中的数据。第三行代码将这两个数据集合并为一个名为 "data" 的数据集,并且忽略原始数据中的索引,使得合并后的数据集中的索引是连续的。
相关问题
加载数据集 train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv') # 提取特征和标签 train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0] test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0]这是一段mnist数据集的读取,请帮我实现mnist数据集的可视化前100张图片代码
好的,可以使用matplotlib库中的subplot函数来实现mnist数据集前100张图片的可视化,代码如下:
```python
import matplotlib.pyplot as plt
import numpy as np
# 加载数据集
train_data = pd.read_csv('mnist_dataset/mnist_train.csv')
test_data = pd.read_csv('mnist_dataset/mnist_test.csv')
# 提取特征和标签
train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0]
test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0]
# 可视化前100张图片
def visualize_images(features, labels):
fig, axs = plt.subplots(10, 10, figsize=(10, 10))
for i in range(10):
for j in range(10):
axs[i, j].imshow(np.array(features.iloc[i * 10 + j]).reshape(28, 28), cmap='gray')
axs[i, j].axis('off')
axs[i, j].set_title('Label: {}'.format(labels.iloc[i * 10 + j]))
plt.show()
# 可视化前100张训练集图片
visualize_images(train_features[:100], train_labels[:100])
```
以上代码会将训练集前100张图片可视化出来,你可以根据需要修改数量来可视化其他图片。
train_data=pd.read_csv('train.csv') financial_data=train_data financial_data.head()
这段代码的作用是读取名为 "train.csv" 的文件,并将其转换为 pandas DataFrame 格式的数据,然后将其赋值给变量 `train_data`。接着,将 `train_data` 赋值给变量 `financial_data`,再打印 `financial_data` 的前五行数据。换句话说,这段代码是用来读取并展示训练数据集的头部信息。
阅读全文