X_train = scaler.transform(X_train_tensor).unsqueeze(-1)
时间: 2024-03-26 20:37:02 浏览: 111
这段代码看起来像是对数据进行预处理,可以看出其中使用了一个名为scaler的对象对X_train_tensor进行了transform操作,并且在最后对数据进行了一个unsqueeze操作。其中unsqueeze(-1)的作用是在数据的最后一维增加一个维度,通常是为了符合模型的输入要求。具体的细节需要看代码上下文才能确定。
相关问题
def preprocess(data, window): data_corr = data.corr()['Power'] key = [] for i in data_corr.keys(): if (data_corr[i] > 0.6): key.append(i) data = data[key] data = data.dropna(subset=['Power']) #数据预处理: 删除功率为空的数据组 data = data.fillna(0) # 数据预处理:将缺失值NAN值赋0 data[data < 0] = 0 #数据预处理:对<0的功率值赋为0 scaler = MinMaxScaler() # data[key] = scaler.fit_transform(data[key].to_numpy()) train_x = [] train_y = [] L = len(data) for i in range(L - window): train_seq = data[key][i:i + window] train_x.append(train_seq) train_label = data['Power'][i + window:i + window + 1] train_y.append(train_label) train_x = torch.from_numpy(np.array(train_x)) train_y = torch.from_numpy(np.array(train_y)) train_x = torch.tensor(train_x, dtype=torch.float) train_y = torch.tensor(train_y, dtype=torch.float) print(train_y.type()) return train_x, train_y
这段代码是一个数据预处理的函数,其中包含以下步骤:
1. 首先计算 DataFrame 数据中 'Power' 列与其他列的相关系数,筛选出相关系数大于 0.6 的列作为特征列;
2. 删除 'Power' 列中包含缺失值(NaN)的行;
3. 将 DataFrame 中的缺失值用 0 填充;
4. 对 DataFrame 中小于 0 的功率值赋为 0;
5. 使用 MinMaxScaler 进行特征缩放;
6. 将数据按照窗口大小 window 进行切分,每个窗口内包含 window 个连续的特征值和一个对应的功率值,作为训练数据;
7. 将训练数据转换为 PyTorch 张量,并返回训练数据集 train_x 和 train_y。
需要注意的是,该函数中使用了 PyTorch 中的张量(tensor)作为数据类型,并且使用了 MinMaxScaler 对特征进行缩放。
请解释以下代码:class MyData(Dataset): def __init__(self,train=True): super(MyData, self).__init__() url = 'shuju(2).xlsx' #读取数据 data_set = pd.read_excel(url,sheet_name='Sheet2').dropna() #读取前四类的数据作为data data = data_set.iloc[:,:-1] #数据标准化处理 standard_scaler = preprocessing.StandardScaler() X_standard = standard_scaler.fit_transform(data).astype(np.float32) #转化为tensor数据 data = torch.tensor(X_standard) #选取label label = np.array(data_set.iloc[:,-1]).astype(np.float32) #转化为tensor数据 label = torch.tensor(label) #区分训练集、测试集 x_train, x_test, y_train, y_test = data[:90,:],data[90:,:],label[:90],label[90:] if train: self.a = x_train self.b = y_train else: self.a = x_test self.b = y_test # self.trans = transforms.ToTensor
这段代码定义了一个名为 `MyData` 的数据集类,继承了 `Dataset` 类。该数据集类可以用于 PyTorch 中的数据加载器,用于训练和测试模型。
在 `__init__` 方法中,首先调用了父类 `Dataset` 的构造函数。然后,从 Excel 文件中读取数据,并将前几列作为特征数据,最后一列作为标签数据。接着,使用 `preprocessing.StandardScaler()` 对特征数据进行标准化处理,使其均值为0,标准差为1。
接下来,将标准化后的特征数据转化为 PyTorch 中的 `tensor` 数据类型,并将标签数据转化为 `tensor` 数据类型。然后,将数据集分为训练集和测试集,并将它们存储在类属性 `a` 和 `b` 中。最后,如果需要,可以使用 `transforms.ToTensor` 对数据进行转换。
在训练模型时,可以通过实例化 `MyData` 类来获得训练集和测试集的特征和标签数据。
阅读全文