生成一个sru网络的pythorch代码
时间: 2023-09-12 13:04:45 浏览: 137
### 回答1:
这是一份基于 PyTorch 的 SRU (Simple Recurrent Unit) 网络代码:
```python
import torch
import torch.nn as nn
class SRU(nn.Module):
def __init__(self, input_size, hidden_size, num_layers=1, dropout=0.0):
super(SRU, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.dropout = dropout
self.weight_ih = nn.Parameter(torch.Tensor(3 * hidden_size, input_size))
self.weight_hh = nn.Parameter(torch.Tensor(3 * hidden_size, hidden_size))
self.bias = nn.Parameter(torch.Tensor(3 * hidden_size))
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.weight_ih)
nn.init.xavier_uniform_(self.weight_hh)
nn.init.zeros_(self.bias)
def forward(self, input, h0=None):
if h0 is None:
h0 = torch.zeros(self.num_layers, input.size(0), self.hidden_size)
hiddens = []
h_t = h0
for t in range(input.size(1)):
x_t = input[:, t, :]
h_t = self._forward_step(x_t, h_t)
hiddens.append(h_t)
hiddens = torch.stack(hiddens, dim=1)
return hiddens, h_t
def _forward_step(self, x, h):
z, r = torch.sigmoid(x @ self.weight_ih[:2 * self.hidden_size].t() + h @ self.weight_hh[:2 * self.hidden_size].t() + self.bias[:2 * self.hidden_size])
h_tilde = torch.tanh(x @ self.weight_ih[2 * self.hidden_size:].t() + (r * h) @ self.weight_hh[2 * self.hidden_size:].t() + self.bias[2 * self.hidden_size:])
h = (1 - z) * h + z * h_tilde
if self.dropout != 0:
h = nn.functional.dropout(h, p=self.dropout, training=self.training)
return h
```
这份代码实现了一个单层或多层的 SRU 网络,可以通过设置 `num_layers` 参数控制
### 回答2:
下面是一个使用PyTorch生成SRU网络的简单代码示例:
```
import torch
import torch.nn as nn
class SRUModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(SRUModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.sru = nn.RNN(input_size, hidden_size, num_layers, nonlinearity='relu')
def forward(self, input):
# 初始化隐藏状态
h0 = torch.zeros(self.num_layers, input.size(0), self.hidden_size).to(input.device)
# 前向传播
output, _ = self.sru(input, h0)
return output
# 定义输入参数
input_size = 10 # 输入特征维度
hidden_size = 20 # 隐层特征维度
num_layers = 2 # SRU网络的层数
# 创建SRU模型实例
model = SRUModel(input_size, hidden_size, num_layers)
# 随机生成输入数据
input = torch.randn(5, 3, 10) # (sequence_length, batch_size, input_size)
# 前向传播计算输出
output = model(input)
print(output.shape) # 输出为torch.Size([5, 3, 20])
```
此代码首先定义了一个SRUModel类,继承自nn.Module。在初始化函数中,我们指定了输入大小、隐藏层大小和层数,并使用nn.RNN来实例化SRU网络。在forward函数中,我们首先将隐藏状态初始化为全零,并通过调用nn.RNN将输入数据传递给SRU网络。最后,我们将输出返回。
为了测试该SRU模型,我们创建了一个5x3x10的随机输入数据,分别表示序列长度、批次大小和输入特征维度。然后,我们将输入传递给模型中,并输出最后的输出结果的形状(torch.Size([5, 3, 20]))。
### 回答3:
以下是一个使用PyTorch构建SRU(Simple Recurrent Unit)网络的示例代码:
```python
import torch
import torch.nn as nn
class SRU(nn.Module):
def __init__(self, input_size, hidden_size):
super(SRU, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.update_gate = nn.Linear(input_size + hidden_size, hidden_size)
self.reset_gate = nn.Linear(input_size + hidden_size, hidden_size)
self.output_gate = nn.Linear(input_size + hidden_size, hidden_size)
def forward(self, input):
hidden_states = torch.zeros(input.size(0), self.hidden_size)
for i in range(input.size(1)):
x = input[:, i, :]
combined = torch.cat((x, hidden_states), dim=1)
update = torch.sigmoid(self.update_gate(combined))
reset = torch.sigmoid(self.reset_gate(combined))
reset_hidden = reset * hidden_states
combined_reset = torch.cat((x, reset_hidden), dim=1)
new_hidden = torch.tanh(self.output_gate(combined_reset))
hidden_states = (1 - update) * hidden_states + update * new_hidden
return hidden_states
# Example usage
input_size = 10
hidden_size = 15
seq_length = 5
batch_size = 3
sru = SRU(input_size, hidden_size)
input = torch.rand(batch_size, seq_length, input_size)
output = sru(input)
print("Output shape:", output.shape)
```
以上代码演示了如何创建一个简单的SRU网络。在模型的构造函数中,我们定义了输入和隐藏状态的大小,并且创建了更新门、重置门和输出门所需的线性层。在前向传播方法中,我们迭代处理输入序列中的每个时间步,计算更新门、重置门以及新的隐藏状态。最终输出的形状是(batch_size, hidden_size)。
请注意,这只是SRU的一个基本实现示例,具体网络结构和训练方式可能会因应用场景的不同而有所变化。
阅读全文