for _, train_data in enumerate(trainloader, 0): trainset.data, trainset.targets = train_data什么意思

时间: 2024-01-27 17:03:53 浏览: 35
这段代码是一个用于在 PyTorch 中加载数据的循环。`trainloader` 是一个 PyTorch 数据加载器,其中包含了训练数据集。`enumerate(trainloader, 0)` 可以枚举 `trainloader` 中的每个数据批次,从 0 开始计数。在循环中,`train_data` 是一个包含数据和对应标签的元组。`trainset` 是一个 PyTorch 数据集对象,其中包含了训练数据集的全部数据和标签。通过 `trainset.data` 和 `trainset.targets` 将每个数据批次中的数据和标签分别赋值给 `trainset` 对象的 `data` 和 `targets` 属性,以便在模型训练中使用。最终的效果是将整个训练数据集加载到 `trainset` 对象中。
相关问题

yolov7train.py详解

yolov7train.py 是使用 YOLOv7 算法进行目标检测的训练脚本。下面对 yolov7train.py 的主要代码进行简单的解释: 1. 导入相关库 ```python import argparse import yaml import time import torch from torch.utils.data import DataLoader from torchvision import datasets from models.yolov7 import Model from utils.datasets import ImageFolder from utils.general import ( check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer, set_logging) from utils.torch_utils import ( select_device, time_synchronized, load_classifier, model_info) ``` 这里导入了 argparse 用于解析命令行参数,yaml 用于解析配置文件,time 用于记录时间,torch 用于神经网络训练,DataLoader 用于读取数据集,datasets 和 ImageFolder 用于加载数据集,Model 用于定义 YOLOv7 模型,各种工具函数用于辅助训练。 2. 定义命令行参数 ```python parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default='data.yaml', help='dataset.yaml path') parser.add_argument('--hyp', type=str, default='hyp.yaml', help='hyperparameters path') parser.add_argument('--epochs', type=int, default=300) parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes') parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', nargs='?', const='yolov7.pt', default=False, help='resume most recent training') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') parser.add_argument('--notest', action='store_true', help='only test final epoch') parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') opt = parser.parse_args() ``` 这里定义了许多命令行参数,包括数据集路径、超参数路径、训练轮数、批量大小、图片大小、是否使用矩形训练、是否从最近的检查点恢复训练、是否只保存最终的检查点、是否只测试最终的模型、是否进行超参数进化、gsutil 存储桶等。 3. 加载数据集 ```python with open(opt.data) as f: data_dict = yaml.load(f, Loader=yaml.FullLoader) train_path = data_dict['train'] test_path = data_dict['test'] num_classes = data_dict['nc'] names = data_dict['names'] train_dataset = ImageFolder(train_path, img_size=opt.img_size[0], rect=opt.rect) test_dataset = ImageFolder(test_path, img_size=opt.img_size[1], rect=True) batch_size = opt.batch_size train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True, collate_fn=train_dataset.collate_fn) test_dataloader = DataLoader(test_dataset, batch_size=batch_size * 2, num_workers=8, pin_memory=True, collate_fn=test_dataset.collate_fn) ``` 这里读取了数据集的配置文件,包括训练集、测试集、类别数和类别名称等信息。然后使用 ImageFolder 加载数据集,设置图片大小和是否使用矩形训练。最后使用 DataLoader 加载数据集,并设置批量大小、是否 shuffle、是否使用 pin_memory 等参数。 4. 定义 YOLOv7 模型 ```python model = Model(opt.hyp, num_classes, opt.img_size) model.nc = num_classes device = select_device(opt.device, batch_size=batch_size) model.to(device).train() criterion = model.loss optimizer = torch.optim.SGD(model.parameters(), lr=hyp['lr0'], momentum=hyp['momentum'], weight_decay=hyp['weight_decay']) scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=1, T_mult=2) start_epoch = 0 best_fitness = 0.0 ``` 这里使用 Model 类定义了 YOLOv7 模型,并将其放到指定设备上进行训练。使用交叉熵损失函数作为模型的损失函数,使用 SGD 优化器进行训练,并使用余弦退火学习率调整策略。定义了起始轮数、最佳精度等变量。 5. 开始训练 ```python for epoch in range(start_epoch, opt.epochs): model.train() mloss = torch.zeros(4).to(device) # mean losses for i, (imgs, targets, paths, _) in enumerate(train_dataloader): ni = i + len(train_dataloader) * epoch # number integrated batches (since train start) imgs = imgs.to(device) targets = targets.to(device) loss, _, _ = model(imgs, targets) loss.backward() optimizer.step() optimizer.zero_grad() mloss = (mloss * i + loss.detach().cpu()) / (i + 1) # update mean losses # Print batch results if ni % 20 == 0: print(f'Epoch {epoch}/{opt.epochs - 1}, Batch {i}/{len(train_dataloader) - 1}, lr={optimizer.param_groups[0]["lr"]:.6f}, loss={mloss[0]:.4f}') # Update scheduler scheduler.step() # Update Best fitness with torch.no_grad(): fitness = model_fitness(model) if fitness > best_fitness: best_fitness = fitness # Save checkpoint if (not opt.nosave) or (epoch == opt.epochs - 1): ckpt = { 'epoch': epoch, 'best_fitness': best_fitness, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict() } torch.save(ckpt, f'checkpoints/yolov7_epoch{epoch}.pt') # Test if not opt.notest: t = time_synchronized() model.eval() for j, (imgs, targets, paths, shapes) in enumerate(test_dataloader): if j == 0: pred = model(imgs.to(device)) pred = non_max_suppression(pred, conf_thres=0.001, iou_thres=0.6) else: break t1 = time_synchronized() if isinstance(pred, int) or isinstance(pred, tuple): print(f'Epoch {epoch}/{opt.epochs - 1}, test_loss={mloss[0]:.4f}, test_mAP={0.0}') else: pred = pred[0].cpu() iou_thres = 0.5 niou = [iou_thres] * num_classes ap, p, r = ap_per_class(pred, targets, shapes, iou_thres=niou) mp, mr, map50, f1, _, _ = stats(ap, p, r, gt=targets) print(f'Epoch {epoch}/{opt.epochs - 1}, test_loss={mloss[0]:.4f}, test_mAP={map50:.2f} ({mr*100:.1f}/{mp*100:.1f})') # Plot images if epoch == 0 and j == 0: for i, det in enumerate(pred): # detections per image img = cv2.imread(paths[i]) # BGR img = plot_results(img, det, class_names=names) cv2.imwrite(f'runs/test{i}.jpg', img) if i == 3: break ``` 这里进行了多个 epoch 的训练。在每个 epoch 中,对于每个批量的数据,先将数据移动到指定设备上,然后计算模型的损失函数,并进行反向传播和梯度下降。在每个 epoch 结束时,更新学习率调整策略和最佳精度,保存当前的检查点。如果 opt.notest 为 False,则进行测试,并输出测试结果。最后,如果是第一个 epoch,则绘制部分图像用于可视化。

用eca_resnet50进行图像去噪,包含train.py、val,py、test.py,并在test.py中导出去噪后的图片

好的,首先需要安装相关的库,包括PyTorch、torchvision、Pillow、numpy等。 接着,我们可以定义一个 `ECA_ResNet50` 类,实现图像去噪的功能。具体实现代码如下: ```python import torch import torch.nn as nn import torch.nn.functional as F class ECABlock(nn.Module): def __init__(self, channels, kernel_size, gamma=2, b=1): super(ECABlock, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size, padding=(kernel_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() self.fc = nn.Sequential( nn.Linear(channels, channels // gamma), nn.ReLU(inplace=True), nn.Linear(channels // gamma, channels) ) self.bn = nn.BatchNorm2d(channels, affine=False) self.b = b def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1, -2)) y = y.transpose(-1, -2).unsqueeze(-1) y = self.sigmoid(y) y = x * y.expand_as(x) z = self.fc(y.view(b, c)).view(b, c, 1, 1) out = self.bn(z) * self.b + x return out class ECA_ResNet50(nn.Module): def __init__(self, num_classes=10): super(ECA_ResNet50, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = nn.Sequential( nn.Conv2d(64, 256, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), ECABlock(256, 3), ECABlock(256, 3), ECABlock(256, 3) ) self.layer2 = nn.Sequential( nn.Conv2d(256, 512, kernel_size=1, stride=2, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), ECABlock(512, 3), ECABlock(512, 3), ECABlock(512, 3), ECABlock(512, 3) ) self.layer3 = nn.Sequential( nn.Conv2d(512, 1024, kernel_size=1, stride=2, bias=False), nn.BatchNorm2d(1024), nn.ReLU(inplace=True), ECABlock(1024, 3), ECABlock(1024, 3), ECABlock(1024, 3), ECABlock(1024, 3), ECABlock(1024, 3), ECABlock(1024, 3) ) self.layer4 = nn.Sequential( nn.Conv2d(1024, 2048, kernel_size=1, stride=2, bias=False), nn.BatchNorm2d(2048), nn.ReLU(inplace=True), ECABlock(2048, 3), ECABlock(2048, 3), ECABlock(2048, 3) ) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(2048, num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x ``` 接下来,我们需要定义训练、验证和测试函数。训练函数中,我们使用 `nn.MSELoss()` 作为损失函数,使用 `torch.optim.Adam()` 作为优化器,设置学习率为 0.001,训练 50 个 epoch,每个 epoch 中,我们先将模型设置为训练模式,然后遍历训练集中的每一个 batch,将输入的图像加上噪声,将加噪后的图像送入网络中,计算输出和目标图像的均方误差,并更新网络参数。每个 epoch 完成后,我们调用验证函数,计算模型在验证集上的准确率。测试函数中,我们遍历测试集中的每一个样本,将其送入网络中,得到去噪后的图像,并保存到指定的文件夹中。 具体实现代码如下: ```python import os import numpy as np import argparse from PIL import Image import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision.utils import save_image import torchvision.transforms as transforms def train(net, trainloader, criterion, optimizer, device): net.train() train_loss = 0 for i, (inputs, targets) in enumerate(trainloader): inputs = inputs.to(device) targets = targets.to(device) inputs_noisy = inputs + 0.1 * torch.randn(inputs.size()).to(device) optimizer.zero_grad() outputs = net(inputs_noisy) loss = criterion(outputs, inputs) loss.backward() optimizer.step() train_loss += loss.item() return train_loss / len(trainloader) def val(net, valloader, criterion, device): net.eval() total = 0 correct = 0 val_loss = 0 with torch.no_grad(): for i, (inputs, targets) in enumerate(valloader): inputs = inputs.to(device) targets = targets.to(device) inputs_noisy = inputs + 0.1 * torch.randn(inputs.size()).to(device) outputs = net(inputs_noisy) loss = criterion(outputs, inputs) val_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() return val_loss / len(valloader), correct / total def test(net, testloader, device, output_dir): net.eval() if not os.path.exists(output_dir): os.makedirs(output_dir) for i, (inputs, filename) in enumerate(testloader): inputs = inputs.to(device) inputs_noisy = inputs + 0.1 * torch.randn(inputs.size()).to(device) outputs = net(inputs_noisy) denoised_img = outputs.detach().cpu() save_image(denoised_img, os.path.join(output_dir, filename[0])) def main(): parser = argparse.ArgumentParser(description="Image Denoising with ECA-ResNet50") parser.add_argument('--train-data', type=str, default='./train', help='path to the train data') parser.add_argument('--val-data', type=str, default='./val', help='path to the validation data') parser.add_argument('--test-data', type=str, default='./test', help='path to the test data') parser.add_argument('--output-dir', type=str, default='./output/', help='output directory') parser.add_argument('--num-epochs', type=int, default=50, help='number of epochs to train') parser.add_argument('--batch-size', type=int, default=32, help='batch size') parser.add_argument('--lr', type=float, default=0.001, help='learning rate') parser.add_argument('--num-workers', type=int, default=4, help='number of workers for data loading') parser.add_argument('--cuda', action='store_true', help='use cuda') args = parser.parse_args() train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor() ]) val_transform = transforms.Compose([ transforms.ToTensor() ]) test_transform = transforms.Compose([ transforms.ToTensor() ]) trainset = ImageFolderWithFilename(args.train_data, transform=train_transform) trainloader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) valset = ImageFolderWithFilename(args.val_data, transform=val_transform) valloader = DataLoader(valset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) testset = ImageFolderWithFilename(args.test_data, transform=test_transform) testloader = DataLoader(testset, batch_size=1, shuffle=False, num_workers=args.num_workers) device = torch.device('cuda' if args.cuda and torch.cuda.is_available() else 'cpu') net = ECA_ResNet50().to(device) criterion = nn.MSELoss() optimizer = optim.Adam(net.parameters(), lr=args.lr) for epoch in range(args.num_epochs): train_loss = train(net, trainloader, criterion, optimizer, device) val_loss, val_acc = val(net, valloader, criterion, device) print('Epoch [{}/{}], Train Loss: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}'.format( epoch+1, args.num_epochs, train_loss, val_loss, val_acc)) test(net, testloader, device, args.output_dir) class ImageFolderWithFilename(torchvision.datasets.ImageFolder): def __getitem__(self, index): original_tuple = super().__getitem__(index) path = self.imgs[index][0] tuple_with_path = (original_tuple + (path,)) return tuple_with_path if __name__ == '__main__': main() ``` 最后,我们可以通过以下命令运行代码: ``` python train.py --train-data <path_to_train_data> --val-data <path_to_validation_data> --test-data <path_to_test_data> --output-dir <path_to_output_directory> --num-epochs 50 --batch-size 32 --lr 0.001 --num-workers 4 --cuda ``` 其中,`<path_to_train_data>`、`<path_to_validation_data>` 和 `<path_to_test_data>` 分别为训练集、验证集和测试集的路径,`<path_to_output_directory>` 为输出文件夹的路径。`--num-epochs`、`--batch-size`、`--lr` 和 `--num-workers` 分别表示训练的 epoch 数、batch size、学习率和数据加载的线程数。`--cuda` 表示使用 CUDA 进行训练(如果可用)。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法自动优化指南:解放算法调优,提升效率

![MATLAB遗传算法自动优化指南:解放算法调优,提升效率](https://help-static-aliyun-doc.aliyuncs.com/assets/img/zh-CN/8487939061/p208348.png) # 1. MATLAB遗传算法概述** 遗传算法是一种受生物进化启发的优化算法,它模拟了自然选择和遗传的过程。在MATLAB中,遗传算法工具箱提供了丰富的函数和类,用于创建和运行遗传算法。 **1.1 遗传算法的基本原理** 遗传算法的工作原理如下: - **初始化:**创建由随机个体组成的初始种群。 - **评估:**根据目标函数计算每个个体的适应度。 -
recommend-type

failed to register layer: ApplyLayer exit status 1 stdout: stderr: archive/tar: invalid tar header

很抱歉听到这个问题。这个错误通常是由于Docker镜像损坏或Docker存储库中缺少所需的图层引起的。您可以尝试以下几种方法来解决这个问题: 1. 清理Docker镜像和容器:使用命令“docker system prune”清理不再使用的Docker对象。 2. 检查Docker存储库:确保您正在使用可靠的Docker存储库,并检查是否存在所有必需的图层。 3. 重新下载Docker镜像:如果您确定问题是由于损坏的Docker镜像引起的,则可以尝试重新下载Docker镜像。 4. 更新Docker版本:如果您使用的是旧版Docker,则可能会出现此问题。尝试更新到最新版本的Docke
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB遗传算法大数据优化指南:应对海量数据挑战,挖掘数据价值

![MATLAB遗传算法大数据优化指南:应对海量数据挑战,挖掘数据价值](https://ask.qcloudimg.com/http-save/8934644/c34d493439acba451f8547f22d50e1b4.png) # 1. 遗传算法简介** 遗传算法(GA)是一种受进化论启发的优化算法,它模拟了生物体的自然选择和遗传过程。GA通过以下步骤迭代地搜索最优解: - **初始化:**随机生成一个种群,每个个体代表一个潜在的解决方案。 - **选择:**根据个体的适应度(目标函数值)选择适合繁殖的个体。 - **交叉:**将选定的个体配对并交换基因,产生新的个体。 - **
recommend-type

File path = new File(ResourceUtils.getURL("classpath:static").getPath());

这段代码的作用是获取项目中静态资源文件夹的路径,其中`ResourceUtils.getURL("classpath:static")`表示获取`classpath`下的`static`文件夹的URL,`getPath()`方法则将URL转换成文件路径。最终得到的`File`对象可以用于读取或写入静态资源文件。需要注意的是,这段代码只适用于Spring Boot项目,因为它使用了Spring的`ResourceUtils`类。如果不是Spring Boot项目,可能需要使用其他方式获取静态资源文件夹的路径。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩