TCN端到端分类代码,100个样本,每个样本是一个长度2000的单特征一维序列,输出是2000个0-6的七分类序列,求代码
时间: 2024-03-22 16:41:17 浏览: 40
专199-TCN-BiLSTM-Attention单变量时间序列多步预测
以下是一个基于PyTorch的TCN端到端分类代码示例,适用于您描述的数据:
```python
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
# 定义TCN模型
class TCN(nn.Module):
def __init__(self, input_size, output_size, num_channels, kernel_size, dropout):
super(TCN, self).__init__()
self.tcn = nn.Sequential(
nn.Conv1d(input_size, num_channels, kernel_size=kernel_size),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size=kernel_size, dilation=2),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size=kernel_size, dilation=4),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size=kernel_size, dilation=8),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size=kernel_size, dilation=16),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, output_size, kernel_size=kernel_size)
)
def forward(self, inputs):
y1 = self.tcn(inputs)
return y1
# 定义数据集类
class MyDataset(Dataset):
def __init__(self, data, targets):
self.data = torch.from_numpy(data).float()
self.targets = torch.from_numpy(targets).long()
def __getitem__(self, index):
x = self.data[index]
y = self.targets[index]
return x, y
def __len__(self):
return len(self.data)
# 训练函数
def train(model, device, train_loader, optimizer, criterion, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output.transpose(1, 2), target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# 测试函数
def test(model, device, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output.transpose(1, 2), target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
# 主函数
if __name__ == '__main__':
# 参数设置
input_size = 1
output_size = 7
num_channels = 64
kernel_size = 3
dropout = 0.2
batch_size = 10
epochs = 10
# 数据加载和预处理
# 假设数据保存在data.npy中,targets保存在targets.npy中
data = np.load('data.npy')
targets = np.load('targets.npy')
dataset = MyDataset(data, targets)
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 模型、优化器和损失函数
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = TCN(input_size, output_size, num_channels, kernel_size, dropout).to(device)
optimizer = torch.optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()
# 训练和测试
for epoch in range(1, epochs+1):
train(model, device, train_loader, optimizer, criterion, epoch)
test(model, device, test_loader, criterion)
```
注意,上述代码仅供参考,您可能需要根据您的具体数据和任务对其进行修改和调整。
阅读全文