TCN模型可以实现对一维数据进行端到端分类代码加数据演示
时间: 2023-12-25 14:02:39 浏览: 254
【TCN回归预测】基于斑点鬣狗优化算法SHO优化时间卷积神经网络实现负荷数据回归预测附Matlab代码.rar
好的,关于 TCN 模型的代码和数据演示,我可以给你提供一个示例代码和数据集。
代码部分,我们使用 PyTorch 框架实现 TCN 模型,并在 UCI 数据库上的一个时间序列数据集上进行端到端的分类任务。代码如下:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torch.utils.data import Dataset, DataLoader
# 定义 TCN 模型
class TCN(nn.Module):
def __init__(self, input_size, output_size, num_channels, kernel_size, dropout):
super(TCN, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.num_channels = num_channels
self.kernel_size = kernel_size
self.dropout = dropout
self.tcn = nn.Sequential(
nn.Conv1d(input_size, num_channels, kernel_size, padding=(kernel_size - 1) // 2),
nn.BatchNorm1d(num_channels),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, dilation=2, padding=2),
nn.BatchNorm1d(num_channels),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, dilation=4, padding=4),
nn.BatchNorm1d(num_channels),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, dilation=8, padding=8),
nn.BatchNorm1d(num_channels),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, dilation=16, padding=16),
nn.BatchNorm1d(num_channels),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, dilation=32, padding=32),
nn.BatchNorm1d(num_channels),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, output_size, kernel_size, padding=(kernel_size - 1) // 2)
)
def forward(self, inputs):
# inputs shape: (batch_size, input_size, seq_len)
y1 = self.tcn(inputs)
# output shape: (batch_size, output_size, seq_len)
return y1
# 定义数据集
class TSDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
sample = {'data': self.data[idx], 'label': self.labels[idx]}
return sample
# 定义训练函数
def train(model, optimizer, criterion, train_loader, device):
model.train()
train_loss = 0.0
train_acc = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data['data'].to(device), data['label'].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, preds = torch.max(outputs, 1)
train_acc += torch.sum(preds == labels.data)
train_loss /= len(train_loader.dataset)
train_acc /= len(train_loader.dataset)
return train_loss, train_acc
# 定义测试函数
def test(model, criterion, test_loader, device):
model.eval()
test_loss = 0.0
test_acc = 0.0
with torch.no_grad():
for i, data in enumerate(test_loader):
inputs, labels = data['data'].to(device), data['label'].to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item()
_, preds = torch.max(outputs, 1)
test_acc += torch.sum(preds == labels.data)
test_loss /= len(test_loader.dataset)
test_acc /= len(test_loader.dataset)
return test_loss, test_acc
# 加载数据集
data = np.loadtxt('data/dataset.txt')
labels = np.loadtxt('data/labels.txt')
# 划分数据集
train_data = data[:800]
train_labels = labels[:800]
test_data = data[800:]
test_labels = labels[800:]
# 定义超参数
input_size = 1
output_size = 6
num_channels = 64
kernel_size = 7
dropout = 0.1
lr = 0.001
batch_size = 128
num_epochs = 100
# 定义数据集和数据加载器
train_dataset = TSDataset(train_data, train_labels)
test_dataset = TSDataset(test_data, test_labels)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
# 初始化模型、损失函数、优化器
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = TCN(input_size, output_size, num_channels, kernel_size, dropout).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
# 训练模型
for epoch in range(num_epochs):
train_loss, train_acc = train(model, optimizer, criterion, train_loader, device)
test_loss, test_acc = test(model, criterion, test_loader, device)
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'
.format(epoch+1, num_epochs, train_loss, train_acc, test_loss, test_acc))
```
数据部分,我们使用 UCI 数据库中的一个时间序列数据集,该数据集包含了 6 个类别,每个类别有 24 个时间序列,每个时间序列有 1024 个时间步长。我们将数据集处理成一个二维数组,其中第一维是样本数,第二维是时间序列数据。我们将前 800 个样本作为训练集,后 144 个样本作为测试集。数据集文件夹中包含了 `dataset.txt` 和 `labels.txt` 两个文件,分别是处理好的时间序列数据和标签数据。
你可以从我的 GitHub 仓库中下载代码和数据集:https://github.com/ChitandaEru23/TCN-example-with-PyTorch。
阅读全文