请写一段代码,基于pytorch,建立TCN网络实现对一维时间序列数据的噪声去除
时间: 2024-05-11 13:16:35 浏览: 186
好的,以下是代码实现:
```python
import torch
import torch.nn as nn
from torch.autograd import Variable
class TemporalBlock(nn.Module):
def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding):
super(TemporalBlock, self).__init__()
self.conv1 = nn.Conv1d(n_inputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation)
self.conv2 = nn.Conv1d(n_outputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation)
self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
def forward(self, inputs):
residual = inputs
output = self.conv1(inputs)
output = self.relu1(output)
output = self.conv2(output)
if self.downsample is not None:
residual = self.downsample(inputs)
output += residual
output = self.relu2(output)
return output
class TemporalConvNet(nn.Module):
def __init__(self, num_inputs, num_channels, kernel_size=3, dropout=0.2):
super(TemporalConvNet, self).__init__()
layers = []
num_levels = len(num_channels)
for i in range(num_levels):
dilation_size = 2 ** i
in_channels = num_inputs if i == 0 else num_channels[i-1]
out_channels = num_channels[i]
layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,
padding=(kernel_size-1)*dilation_size, dropout=dropout)]
self.network = nn.Sequential(*layers)
def forward(self, inputs):
return self.network(inputs)
class TCN(nn.Module):
def __init__(self, input_size, output_size, num_channels, kernel_size=3, dropout=0.2):
super(TCN, self).__init__()
self.tcn = TemporalConvNet(input_size, num_channels, kernel_size=kernel_size, dropout=dropout)
self.linear = nn.Linear(num_channels[-1], output_size)
def forward(self, x):
y1 = self.tcn(x.permute(0, 2, 1))
y1 = y1.permute(0, 2, 1)
return self.linear(y1[:, -1, :])
```
上面代码定义了一系列模块,如 TemporalBlock 表示时间卷积层的基本模块,TemporalConvNet 表示多个TemporalBlock连接的TCN,TCN 是模型的整体架构,可以用于一维时间序列数据的噪声去除。
在使用这个模型时,可以按照以下方式进行:
```python
model = TCN(input_size, output_size, num_channels, kernel_size=kernel_size, dropout=dropout)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(train_loader):
inputs = Variable(inputs)
labels = Variable(labels)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
其中,输入的数据 inputs、labels 可以从 train_loader 中提取出来,自行设置 learning rate、batch size、 epoch、优化器 optimizer 等参数进行训练。
阅读全文