TCN端到端分类代码,100个样本,每个样本是一个长度2000的单特征一维序列,输出是2000个0-6的七分类序列,求代码
时间: 2024-03-23 13:42:49 浏览: 74
以下是使用Pytorch实现的TCN端到端分类代码,适用于您的数据集:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
class TCN(nn.Module):
def __init__(self, input_size, output_size, num_channels, kernel_size=2, dropout=0.2):
super(TCN, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.num_channels = num_channels
self.kernel_size = kernel_size
self.dropout = dropout
self.tcn = nn.Sequential(
nn.Conv1d(input_size, num_channels, kernel_size=kernel_size),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size=kernel_size, dilation=2),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size=kernel_size, dilation=4),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size=kernel_size, dilation=8),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size=kernel_size, dilation=16),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size=kernel_size, dilation=32),
nn.BatchNorm1d(num_channels),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(num_channels, output_size, kernel_size=kernel_size)
)
def forward(self, inputs):
"""Inputs have to have dimension (N, C_in, L_in)"""
output = self.tcn(inputs)
return output
class CustomDataset(Dataset):
def __init__(self, x, y):
self.x = x
self.y = y
def __getitem__(self, index):
return self.x[index], self.y[index]
def __len__(self):
return len(self.x)
def train(model, optimizer, criterion, train_loader, device):
model.train()
train_loss = 0
for x, y in train_loader:
optimizer.zero_grad()
x, y = x.to(device), y.to(device)
output = model(x)
loss = criterion(output, y)
train_loss += loss.item()
loss.backward()
optimizer.step()
return train_loss / len(train_loader)
def evaluate(model, criterion, val_loader, device):
model.eval()
val_loss = 0
with torch.no_grad():
for x, y in val_loader:
x, y = x.to(device), y.to(device)
output = model(x)
loss = criterion(output, y)
val_loss += loss.item()
return val_loss / len(val_loader)
input_size = 1 # 单特征一维
output_size = 7 # 七分类
num_channels = 64 # 每层卷积核的数量
kernel_size = 2 # 卷积核大小
dropout = 0.2 # dropout概率
lr = 0.01 # 学习率
batch_size = 10 # 每个batch的样本数
num_epochs = 10 # 迭代次数
# 准备数据
x = torch.randn(100, input_size, 2000)
y = torch.randint(0, 7, (100, output_size))
dataset = CustomDataset(x, y)
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 初始化模型和优化器
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = TCN(input_size, output_size, num_channels, kernel_size, dropout).to(device)
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
# 训练和验证
for epoch in range(num_epochs):
train_loss = train(model, optimizer, criterion, train_loader, device)
print(f"Epoch {epoch+1}, Training Loss: {train_loss:.4f}")
```
其中,TCN类定义了TCN模型的结构,包含多层1D卷积和批标准化层。CustomDataset类定义了自定义数据集,用于加载数据。train函数和evaluate函数分别对模型进行训练和评估。最后,在主函数中,我们准备数据,初始化模型和优化器,然后进行训练和验证。
这个代码是一个基本的框架,您可以根据您的需求进行修改和扩展。
阅读全文