TCN实现一维单特征时间序列信号端到端分类代码,有许多个样本,每个样本数据是一个2000长的数据,每个数据只有一个数,希望输出2000个0-4五分类的标签,pytorch实现,模型够鲁棒
时间: 2024-03-27 17:35:29 浏览: 74
利用pytorch对CIFAR数据进行图像分类(包含全套代码和10+个模型的实现)
5星 · 资源好评率100%
好的,以下是一个简单的TCN模型的PyTorch实现代码:
```python
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
class TCN(nn.Module):
def __init__(self, input_size, output_size, num_channels, kernel_size, dropout):
super(TCN, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.num_channels = num_channels
self.kernel_size = kernel_size
self.dropout = dropout
self.tcn = nn.Sequential(
nn.Conv1d(in_channels=input_size, out_channels=num_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2),
nn.BatchNorm1d(num_channels),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(in_channels=num_channels, out_channels=num_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2),
nn.BatchNorm1d(num_channels),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(in_channels=num_channels, out_channels=num_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2),
nn.BatchNorm1d(num_channels),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(in_channels=num_channels, out_channels=output_size, kernel_size=1, stride=1),
)
def forward(self, x):
y = self.tcn(x)
return y.permute(0, 2, 1)
class TimeSeriesDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __getitem__(self, index):
return self.data[index], self.labels[index]
def __len__(self):
return len(self.data)
# 假设数据已经准备好,分别是train_data, train_labels, test_data, test_labels
batch_size = 32
num_epochs = 50
learning_rate = 0.001
train_dataset = TimeSeriesDataset(train_data, train_labels)
test_dataset = TimeSeriesDataset(test_data, test_labels)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
input_size = 1 # 每个数据只有一个数
output_size = 5 # 五分类
num_channels = 64 # TCN中卷积层的输出通道数
kernel_size = 7 # TCN中卷积核的大小
dropout = 0.2 # TCN中的dropout概率
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = TCN(input_size, output_size, num_channels, kernel_size, dropout).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
train_loss = 0
train_acc = 0
model.train()
for data, labels in train_loader:
data = data.to(device)
labels = labels.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output.view(-1, output_size), labels.view(-1))
loss.backward()
optimizer.step()
train_loss += loss.item() * data.size(0)
train_acc += torch.sum(torch.argmax(output, dim=1) == labels)
train_loss /= len(train_loader.dataset)
train_acc = train_acc.float() / len(train_loader.dataset)
test_loss = 0
test_acc = 0
model.eval()
with torch.no_grad():
for data, labels in test_loader:
data = data.to(device)
labels = labels.to(device)
output = model(data)
loss = criterion(output.view(-1, output_size), labels.view(-1))
test_loss += loss.item() * data.size(0)
test_acc += torch.sum(torch.argmax(output, dim=1) == labels)
test_loss /= len(test_loader.dataset)
test_acc = test_acc.float() / len(test_loader.dataset)
print('Epoch: {}, Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'.format(epoch+1, train_loss, train_acc, test_loss, test_acc))
```
注:以上代码中的TCN模型只有3层卷积层,这里是为了简化代码和提高训练速度。实际使用时可以增加层数,也可以通过调整卷积核大小和输出通道数来调整模型复杂度。另外,为了加快训练速度,这里使用了PyTorch的DataLoader来加载数据,可以自己实现一个简单的Dataset类来处理数据。
阅读全文