TCN实现一维单特征时间序列信号端到端分类代码,有100个样本,每个样本数据是一个2000长的数据,每个数据只有一个数,希望输出2000个0-6七分类的标签,每类之间的变化位置不明确需要模型去学习
时间: 2024-03-21 18:39:33 浏览: 33
以下是使用PyTorch实现的TCN模型代码,可以实现单特征时间序列信号端到端分类:
```python
import torch
import torch.nn as nn
class TCN(nn.Module):
def __init__(self, input_size, output_size, num_channels, kernel_size, dropout):
super(TCN, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.num_channels = num_channels
self.kernel_size = kernel_size
self.dropout = dropout
self.tcn = nn.Sequential(
nn.Conv1d(input_size, num_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, output_size, kernel_size, stride=1, padding=(kernel_size - 1) // 2),
)
def forward(self, x):
y = self.tcn(x)
return y
```
其中,`input_size`为输入数据的维度,本例中为1;`output_size`为输出数据的维度,本例中为7;`num_channels`为每层卷积核的个数;`kernel_size`为每层卷积核的大小;`dropout`为dropout的比例。
以下是模型的训练过程:
```python
import torch.optim as optim
model = TCN(input_size=1, output_size=7, num_channels=64, kernel_size=7, dropout=0.2)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(100):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs.transpose(1, 2), labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[%d] loss: %.3f' %(epoch + 1, running_loss / len(trainloader)))
print('Finished Training')
```
其中,`trainloader`是按批次加载数据的数据加载器,可以使用`torch.utils.data.DataLoader`来实现。
需要注意的是,在计算交叉熵损失时,需要将输出进行转置,将时间步作为第二个维度。
在预测时,可以使用以下代码:
```python
model.eval()
with torch.no_grad():
for i, data in enumerate(testloader, 0):
inputs, labels = data
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
print(predicted)
```
其中,`testloader`是测试集的数据加载器。预测的结果即为每个时间步的分类标签。
阅读全文