微调resnet模型 mnist pytorch
时间: 2023-05-14 21:07:25 浏览: 187
resnet-pytorch
可以使用以下代码来微调resnet模型在mnist数据集上:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torchvision.models import resnet18
# Load MNIST dataset
transform = transforms.Compose(
[transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
trainset = torchvision.datasets.MNIST(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32,
shuffle=True, num_workers=2)
testset = torchvision.datasets.MNIST(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=32,
shuffle=False, num_workers=2)
# Define resnet model
model = resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 10)
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# Train the model
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
# Test the model
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
```
这段代码会加载resnet18模型,并在MNIST数据集上微调它。我们首先将MNIST图像的大小调整为224x224,然后将其输入到resnet模型中。我们还将resnet的最后一层替换为一个具有10个输出的全连接层,以便我们可以对MNIST数据集进行分类。我们使用交叉熵损失函数和随机梯度下降优化器来训练模型。在训练完成后,我们使用测试集来评估模型的准确性。
阅读全文