yolov8 pose rknn
时间: 2023-08-17 16:07:23 浏览: 352
你可以通过以下步骤将YOLOv8n-pose模型转换为RKNN格式进行部署:
1. 首先,确保你已经在本地下载了YOLOv8n-pose的项目,并且已经安装好了相应的环境。
2. 使用以下命令进行Python推理,将摄像头的输入源设置为0(即代表使用摄像头作为输入源)并显示结果:
```
python 推理 yolo task=pose mode=predict model=yolov8n-pose.pt source=0 show=true
```
3. 将YOLOv8n-pose模型转换为ONNX格式。使用以下命令将模型导出为ONNX格式:
```
yolo export model=yolov8n-pose.pt format=onnx
```
4. 转换之后,你可以得到一个ONNX模型,该模型具有一个输出,其维度为。这里的8400表示有8400个检测框,56为4边界框坐标信息、人这个类别预测分数和17*3关键点信息。每个关键点由x、y和v组成,其中v表示该点是否可见,当v小于0.5时,表示该关键点可能在图像外部,可以考虑去除掉。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [YOLOv8 人体姿态估计(关键点检测) python推理 && ONNX RUNTIME C++部署](https://blog.csdn.net/weixin_45824067/article/details/130618583)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文