binary_cross_entropy_with_logits是什么损失函数
时间: 2023-03-28 15:00:36 浏览: 104
binary_cross_entropy_with_logits是一种用于二分类问题的损失函数,它将模型输出的logits值通过sigmoid函数转换为概率值,然后计算真实标签与预测概率之间的交叉熵损失。
相关问题
F.binary_cross_entropy和F.binary_cross_entropy_with_logits的区别,及各自的用法
F.binary_cross_entropy和F.binary_cross_entropy_with_logits是PyTorch中常用的两个损失函数,用于二分类问题。
F.binary_cross_entropy的输入是预测结果和目标标签,它先将预测结果通过sigmoid函数映射到[0, 1]之间的概率值,再计算二分类交叉熵损失。这个函数适用于模型输出为概率值的情况。
F.binary_cross_entropy_with_logits的输入是预测结果和目标标签,但它不会对预测结果进行sigmoid转换。它先将预测结果称为“logits”,然后计算二分类交叉熵损失。这个函数适用于模型输出未经过概率映射的情况。
具体使用时,如果你的模型输出已经通过sigmoid激活函数得到了概率值,那么可以使用F.binary_cross_entropy;如果模型输出是未经过概率映射的原始值,那么应该使用F.binary_cross_entropy_with_logits。
示例代码如下:
```python
import torch
import torch.nn.functional as F
# 模拟模型输出和目标标签
logits = torch.tensor([0.5, 0.8, 0.2])
targets = torch.tensor([1, 0, 1])
# 使用F.binary_cross_entropy计算损失
probs = torch.sigmoid(logits)
loss = F.binary_cross_entropy(probs, targets)
print(loss.item()) # 输出损失值
# 使用F.binary_cross_entropy_with_logits计算损失
loss_logits = F.binary_cross_entropy_with_logits(logits, targets)
print(loss_logits.item()) # 输出损失值
```
希望能帮助到你!
还有个问题,可否帮助我解释这个问题:RuntimeError: torch.nn.functional.binary_cross_entropy and torch.nn.BCELoss are unsafe to autocast. Many models use a sigmoid layer right before the binary cross entropy layer. In this case, combine the two layers using torch.nn.functional.binary_cross_entropy_with_logits or torch.nn.BCEWithLogitsLoss. binary_cross_entropy_with_logits and BCEWithLogits are safe to autocast.
这个错误是在告诉你,使用`torch.nn.functional.binary_cross_entropy`或`torch.nn.BCELoss`计算二元交叉熵损失是不安全的。它建议你使用`torch.nn.functional.binary_cross_entropy_with_logits`或`torch.nn.BCEWithLogitsLoss`来代替。
在使用二元交叉熵损失的时候,通常需要在计算交叉熵损失之前使用sigmoid函数将输出转化为概率值。`binary_cross_entropy_with_logits`和`BCEWithLogitsLoss`已经内置了sigmoid函数,所以你可以直接使用它们而不用担心sigmoid函数带来的问题。
举个例子,你可以将如下代码:
```
import torch.nn as nn
# Compute the loss using the sigmoid of the output and the binary cross entropy loss
output = model(input)
loss = nn.functional.binary_cross_entropy(nn.functional.sigmoid(output), target)
```
改为如下代码:
```
import torch.nn as nn
# Compute the loss using the binary cross entropy loss with logits
output = model(input)
loss = nn.BCEWithLogitsLoss(output, target)
```
阅读全文