tensorflow中keras.Sequential各输入参数的含义

时间: 2023-02-07 07:53:07 浏览: 138
keras.Sequential 是一个用于构建模型的序列模型,你可以将它理解为一组有序的层的集合。在使用 keras.Sequential 时,你可以传递一些参数,这些参数将会影响这个序列模型的行为。 - layers: 这个参数接受一个层的列表,这些层将会按照传入的顺序依次加入到序列模型中。 - name: 这个参数接受一个字符串,用于为这个序列模型命名。 - weights: 这个参数接受一个权重列表,用于初始化序列模型的权重。 - input_tensor: 这个参数接受一个张量,用于将这个张量作为序列模型的输入。 - input_shape: 这个参数接受一个整数元组,用于为序列模型定义输入尺寸。 - batch_input_shape: 这个参数接受一个整数元组,用于为序列模型定义批次输入尺寸。 - batch_size: 这个参数接受一个整数,用于为序列模型定义批次大小。 - dtype: 这个参数接受一个字符串,用于为序列模型定义数据类型。
相关问题

tensorflow中keras.Sequential的用法

### 回答1: TensorFlow 中的 Keras 是一个高阶神经网络 API,其中 Sequential 是一个常用的模型类型。使用 Sequential 类可以方便地建立一个线性堆叠的模型。 使用方法如下: ``` from tensorflow.keras import Sequential model = Sequential() ``` 然后可以在模型上连续添加层,例如: ``` from tensorflow.keras.layers import Dense model = Sequential() model.add(Dense(units=64, activation='relu', input_dim=100)) model.add(Dense(units=10, activation='softmax')) ``` 最后进行编译并训练 ``` model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5, batch_size=32) ``` 使用sequential的优点是可以快速简洁的定义网络,不用自己定义一层一层的连接。 ### 回答2: keras.Sequential是TensorFlow中的一个类,用于构建序列模型。它允许我们按照顺序添加不同的层来构建神经网络模型。 使用keras.Sequential,我们可以通过一系列的add()方法来添加不同类型的层,例如全连接层、卷积层、池化层、循环层等。每个add()操作会在模型的末尾添加一个新的层。 在实例化Sequential类后,我们可以使用compile()函数来配置模型的训练参数,如优化算法、损失函数和评估指标。接下来,我们可以使用fit()函数将输入数据和标签进行训练。使用predict()函数可以对新数据进行预测。 对于简单的模型构建,Sequential是非常方便的工具。但对于复杂的模型,如果需要跨多个层之间的连接、共享权重或者多个输入/输出,可能需要使用更加灵活的函数式API。 综上所述,通过使用keras.Sequential,我们可以快速、简单地构建一个序列模型,并进行训练、评估和预测。 ### 回答3: tensorflow中的keras.Sequential是一个用于构建序列模型的类。该类提供了一种简单方便的方法来构建深度学习模型。 首先,我们需要导入相应的库: ```python import tensorflow as tf from tensorflow import keras ``` 然后,我们可以创建一个Sequential模型对象: ```python model = keras.Sequential() ``` 接下来,我们可以通过在模型对象上使用add()方法来添加不同类型的层: ```python model.add(keras.layers.Dense(units=64, activation='relu', input_shape=(100,))) model.add(keras.layers.Dense(units=64, activation='relu')) model.add(keras.layers.Dense(units=10, activation='softmax')) ``` 在上面的例子中,我们添加了两个全连接层和一个输出层。第一个全连接层有64个神经元,使用relu激活函数,接收大小为100的输入。第二个全连接层也有64个神经元,同样使用relu激活函数。最后一个输出层有10个神经元,使用softmax激活函数。 最后,我们可以编译模型并进行训练: ```python model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=10, batch_size=32) ``` 上面的代码中,我们指定了优化器(adam)、损失函数(categorical_crossentropy)和评估指标(准确率)。然后,我们使用训练数据训练模型,并指定训练的轮数和每个批次的大小。 通过上述例子,我们可以看到Sequential的用法是非常简洁和直观的。它提供了一种快速构建深度学习模型的方法,适用于许多常见的模型结构。

如何绕开from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense这些库,我的python无法调用这些库

如果你无法使用 `tensorflow.keras` 库中的模块,你可以尝试使用其他深度学习框架,例如PyTorch或CNTK,或者使用更基础的Python库来手动实现这些层的功能。 以下是一个使用基础Python库手动实现CNN模型的示例: ```python import numpy as np import matplotlib.pyplot as plt # 定义卷积层 def conv1d(x, w, b, stride=1, padding=0): n, c, l = x.shape f, c, k = w.shape p = padding out_l = int(np.floor((l + 2*p - k) / stride)) + 1 # 对输入数据进行padding x_pad = np.pad(x, ((0,0),(0,0),(p,p)), 'constant') # 定义输出 out = np.zeros((n, f, out_l)) # 卷积计算 for i in range(out_l): x_window = x_pad[:, :, (i*stride):(i*stride+k)] for j in range(f): out[:,j,i] = np.sum(x_window * w[j,:,:], axis=(1,2)) + b[j] return out # 定义max pooling层 def max_pool1d(x, pool_size=2, stride=None): n, c, l = x.shape if stride is None: stride = pool_size out_l = int(np.floor((l - pool_size) / stride)) + 1 # 定义输出 out = np.zeros((n, c, out_l)) # pooling计算 for i in range(out_l): x_window = x[:, :, (i*stride):(i*stride+pool_size)] out[:,:,i] = np.max(x_window, axis=2) return out # 定义全连接层 def linear(x, w, b): return np.dot(x, w) + b # 定义ReLU激活函数 def relu(x): return np.maximum(0, x) # 生成正弦函数数据 x = np.linspace(0, 50, 500) y = np.sin(x) # 将数据变为3D张量 X = y.reshape(-1, 500, 1) # 定义模型参数 W1 = np.random.randn(32, 1, 3) b1 = np.zeros((32,)) W2 = np.random.randn(64, 32, 3) b2 = np.zeros((64,)) W3 = np.random.randn(256, 64) b3 = np.zeros((256,)) W4 = np.random.randn(1, 256) b4 = np.zeros((1,)) # 定义模型 def model(X): out = conv1d(X, W1, b1, stride=1, padding=0) out = relu(out) out = max_pool1d(out, pool_size=2, stride=None) out = conv1d(out, W2, b2, stride=1, padding=0) out = relu(out) out = max_pool1d(out, pool_size=2, stride=None) out = out.reshape((-1, 256)) out = linear(out, W3, b3) out = relu(out) out = linear(out, W4, b4) return out # 定义损失函数和优化器 def mse_loss(pred, target): return np.mean(np.square(pred - target)) def sgd_optimizer(grads, lr=0.01): for param, grad in grads: param -= lr * grad # 训练模型 epochs = 50 batch_size = 16 lr = 0.01 num_batches = X.shape[0] // batch_size for epoch in range(epochs): for i in range(num_batches): X_batch = X[i*batch_size:(i+1)*batch_size] y_batch = y[i*batch_size:(i+1)*batch_size] # 前向传播 pred = model(X_batch) loss = mse_loss(pred, y_batch) # 反向传播 grads = [] dL_dy = 2 * (pred - y_batch) / batch_size grads.append((W4, np.dot(model(X_batch).T, dL_dy))) grads.append((b4, np.sum(dL_dy, axis=0, keepdims=True))) dL_dx = np.dot(dL_dy, W4.T) dL_dx = relu(dL_dx) grads.append((W3, np.dot(model(X_batch).T, dL_dx))) grads.append((b3, np.sum(dL_dx, axis=0, keepdims=True))) dL_dx = dL_dx.reshape((-1, 64, 4)) dL_dx = max_pool1d(dL_dx, pool_size=2, stride=None) dL_dx = dL_dx.reshape((-1, 256)) dL_dx = relu(dL_dx) grads.append((W2, np.dot(max_pool1d(model(X_batch), pool_size=2, stride=None).T, dL_dx))) grads.append((b2, np.sum(dL_dx, axis=0, keepdims=True))) dL_dx = np.dot(dL_dx, W2.T) dL_dx = relu(dL_dx) grads.append((W1, np.dot(conv1d(X_batch, W1, b1, stride=1, padding=0).T, dL_dx))) grads.append((b1, np.sum(dL_dx, axis=0, keepdims=True))) # 更新模型参数 sgd_optimizer(grads, lr=lr) print('Epoch: {}, Loss: {:.4f}'.format(epoch+1, loss)) # 预测结果并可视化 y_pred = model(X).flatten() plt.plot(x, y, label='Ground Truth') plt.plot(x, y_pred, label='Predictions') plt.legend() plt.show() ``` 需要注意的是,这个示例代码仅仅是一个简单的实现,它可能不如 `tensorflow.keras` 库中的模块稳定或高效。如果你需要更复杂的模型或更高效的实现,建议考虑使用其他深度学习框架或尝试解决你的 `tensorflow.keras` 库调用问题。
阅读全文

相关推荐

import tensorflow as tf from tensorflow import keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten from tensorflow.keras.layers import Conv2D, Conv1D, BatchNormalization, MaxPooling2D,Conv2DTranspose from tensorflow.keras.optimizers import Adam # 优化器 import tensorflow.keras from tensorflow.keras import optimizers def build_model(): model = Sequential() # Sequential模型是keras两种模型之一,另一种是model模型 """构建模型""" # 第一层卷积,需要指定input_shape的参数 num_classes = 7 img_size = 48 model.add(Conv2D(32, (1, 1), strides=1, padding='same', input_shape=(img_size, img_size, 1))) model.add(Activation('relu')) # 激活函数 model.add(Conv2D(32, (5, 5), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) # 最大池化 model.add(Conv2D(32, (3, 3), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (5, 5), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(2048)) # 全连接层 model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(1024)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizers.RMSprop(learning_rate=0.0001), metrics=['accuracy']) # 自动扩充训练样本 model.summary() # 显示训练模型结构 return model 帮我写注释

使用遗传算法优化神经网络模型的超参数(可选超参数包括训练迭代次数,学习率,网络结构等)的代码,原来的神经网络模型如下:import numpy as np import tensorflow as tf from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.utils import to_categorical from tensorflow.keras.optimizers import Adam from sklearn.model_selection import train_test_split # 加载MNIST数据集 (X_train, y_train), (X_test, y_test) = mnist.load_data() # 数据预处理 X_train = X_train.reshape(-1, 28, 28, 1).astype('float32') / 255.0 X_test = X_test.reshape(-1, 28, 28, 1).astype('float32') / 255.0 y_train = to_categorical(y_train) y_test = to_categorical(y_test) # 划分验证集 X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=42) def create_model(): model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(10, activation='softmax')) return model model = create_model() # 定义优化器、损失函数和评估指标 optimizer = Adam(learning_rate=0.001) loss_fn = tf.keras.losses.CategoricalCrossentropy() metrics = ['accuracy'] # 编译模型 model.compile(optimizer=optimizer, loss=loss_fn, metrics=metrics) # 设置超参数 epochs = 10 batch_size = 32 # 开始训练 history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(X_val, y_val)) # 评估模型 test_loss, test_accuracy = model.evaluate(X_test, y_test) print('Test Loss:', test_loss) print('Test Accuracy:', test_accuracy)

def network_model(inputs,num_pitch,weights_file=None):#输入,音符的数量,训练后的参数文件 #测试时要指定weights_file #建立模子 model=tf.keras.Sequential() #第一层 model.add(tf.keras.layers.LSTM( 512,#LSTM层神经元的数目是512,也是LSTM层输出的维度 input_shape=(inputs.shape[1],inputs.shape[2]),#输入的形状,对于第一个LSTM必须设置 return_sequences=True#返回控制类型,此时是返回所有的输出序列 #True表示返回所有的输出序列 #False表示返回输出序列的最后一个输出 #在堆叠的LSTM层时必须设置,最后一层LSTM不用设置,默认值为False )) #第二层和第三层 model.add(tf.keras.layers.Dropout(0.75))#丢弃30%神经元,防止过拟合 model.add(tf.keras.layers.LSTM(512,return_sequences=True)) model.add(tf.keras.layers.Dropout(0.75))#丢弃30%神经元,防止过拟合 model.add(tf.keras.layers.LSTM(512))#千万不要丢括号!!!! #全连接层 model.add(tf.keras.layers.Dense(256))#256个神经元的全连接层 model.add(tf.keras.layers.Dropout(0.75)) model.add(tf.keras.layers.Dense(num_pitch))#输出的数目等于所有不重复的音调数 #激活层 model.add(tf.keras.layers.Activation('softmax'))#Softmax激活函数求概率 #配置神经网络模型 model.compile(loss='categorical_crossentropy',optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0004)) #选择的损失函数是交叉熵,用来计算误差。使用对于RNN来说比较优秀的优化器-RMSProp #优化器如果使用字符串的话会用默认参数导致效果不好 return model

最新推荐

recommend-type

使用keras实现孪生网络中的权值共享教程

在Keras中,我们可以利用Functional API或Sequential API来实现孪生网络中的权值共享。 **什么是权值共享?** 权值共享是指在神经网络的不同位置使用相同的权重参数。在孪生网络中,权值共享确保两个分支经过同样的...
recommend-type

cairo-devel-1.15.12-4.el7.x86_64.rpm.zip

文件放服务器下载,请务必到电脑端资源详情查看然后下载
recommend-type

Angular程序高效加载与展示海量Excel数据技巧

资源摘要信息: "本文将讨论如何在Angular项目中加载和显示Excel海量数据,具体包括使用xlsx.js库读取Excel文件以及采用批量展示方法来处理大量数据。为了更好地理解本文内容,建议参阅关联介绍文章,以获取更多背景信息和详细步骤。" 知识点: 1. Angular框架: Angular是一个由谷歌开发和维护的开源前端框架,它使用TypeScript语言编写,适用于构建动态Web应用。在处理复杂单页面应用(SPA)时,Angular通过其依赖注入、组件和服务的概念提供了一种模块化的方式来组织代码。 2. Excel文件处理: 在Web应用中处理Excel文件通常需要借助第三方库来实现,比如本文提到的xlsx.js库。xlsx.js是一个纯JavaScript编写的库,能够读取和写入Excel文件(包括.xlsx和.xls格式),非常适合在前端应用中处理Excel数据。 3. xlsx.core.min.js: 这是xlsx.js库的一个缩小版本,主要用于生产环境。它包含了读取Excel文件核心功能,适合在对性能和文件大小有要求的项目中使用。通过使用这个库,开发者可以在客户端对Excel文件进行解析并以数据格式暴露给Angular应用。 4. 海量数据展示: 当处理成千上万条数据记录时,传统的方式可能会导致性能问题,比如页面卡顿或加载缓慢。因此,需要采用特定的技术来优化数据展示,例如虚拟滚动(virtual scrolling),分页(pagination)或懒加载(lazy loading)等。 5. 批量展示方法: 为了高效显示海量数据,本文提到的批量展示方法可能涉及将数据分组或分批次加载到视图中。这样可以减少一次性渲染的数据量,从而提升应用的响应速度和用户体验。在Angular中,可以利用指令(directives)和管道(pipes)来实现数据的分批处理和显示。 6. 关联介绍文章: 提供的文章链接为读者提供了更深入的理解和实操步骤。这可能是关于如何配置xlsx.js在Angular项目中使用、如何读取Excel文件中的数据、如何优化和展示这些数据的详细指南。读者应根据该文章所提供的知识和示例代码,来实现上述功能。 7. 文件名称列表: "excel"这一词汇表明,压缩包可能包含一些与Excel文件处理相关的文件或示例代码。这可能包括与xlsx.js集成的Angular组件代码、服务代码或者用于展示数据的模板代码。在实际开发过程中,开发者需要将这些文件或代码片段正确地集成到自己的Angular项目中。 总结而言,本文将指导开发者如何在Angular项目中集成xlsx.js来处理Excel文件的读取,以及如何优化显示大量数据的技术。通过阅读关联介绍文章和实际操作示例代码,开发者可以掌握从后端加载数据、通过xlsx.js解析数据以及在前端高效展示数据的技术要点。这对于开发涉及复杂数据交互的Web应用尤为重要,特别是在需要处理大量数据时。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南

![【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南](https://www.vandyke.com/images/screenshots/securecrt/scrt_94_windows_session_configuration.png) 参考资源链接:[SecureCRT设置代码关键字高亮教程](https://wenku.csdn.net/doc/6412b5eabe7fbd1778d44db0?spm=1055.2635.3001.10343) # 1. SecureCRT简介与高亮功能概述 SecureCRT是一款广泛应用于IT行业的远程终端仿真程序,支持
recommend-type

如何设计一个基于FPGA的多功能数字钟,实现24小时计时、手动校时和定时闹钟功能?

设计一个基于FPGA的多功能数字钟涉及数字电路设计、时序控制和模块化编程。首先,你需要理解计时器、定时器和计数器的概念以及如何在FPGA平台上实现它们。《大连理工数字钟设计:模24计时器与闹钟功能》这份资料详细介绍了实验报告的撰写过程,包括设计思路和实现方法,对于理解如何构建数字钟的各个部分将有很大帮助。 参考资源链接:[大连理工数字钟设计:模24计时器与闹钟功能](https://wenku.csdn.net/doc/5y7s3r19rz?spm=1055.2569.3001.10343) 在硬件设计方面,你需要准备FPGA开发板、时钟信号源、数码管显示器、手动校时按钮以及定时闹钟按钮等
recommend-type

Argos客户端开发流程及Vue配置指南

资源摘要信息:"argos-client:客户端" 1. Vue项目基础操作 在"argos-client:客户端"项目中,首先需要进行项目设置,通过运行"yarn install"命令来安装项目所需的依赖。"yarn"是一个流行的JavaScript包管理工具,它能够管理项目的依赖关系,并将它们存储在"package.json"文件中。 2. 开发环境下的编译和热重装 在开发阶段,为了实时查看代码更改后的效果,可以使用"yarn serve"命令来编译项目并开启热重装功能。热重装(HMR, Hot Module Replacement)是指在应用运行时,替换、添加或删除模块,而无需完全重新加载页面。 3. 生产环境的编译和最小化 项目开发完成后,需要将项目代码编译并打包成可在生产环境中部署的版本。运行"yarn build"命令可以将源代码编译为最小化的静态文件,这些文件通常包含在"dist/"目录下,可以部署到服务器上。 4. 单元测试和端到端测试 为了确保项目的质量和可靠性,单元测试和端到端测试是必不可少的。"yarn test:unit"用于运行单元测试,这是测试单个组件或函数的测试方法。"yarn test:e2e"用于运行端到端测试,这是模拟用户操作流程,确保应用程序的各个部分能够协同工作。 5. 代码规范与自动化修复 "yarn lint"命令用于代码的检查和风格修复。它通过运行ESLint等代码风格检查工具,帮助开发者遵守预定义的编码规范,从而保持代码风格的一致性。此外,它也能自动修复一些可修复的问题。 6. 自定义配置与Vue框架 由于"argos-client:客户端"项目中提到的Vue标签,可以推断该项目使用了Vue.js框架。Vue是一个用于构建用户界面的渐进式JavaScript框架,它允许开发者通过组件化的方式构建复杂的单页应用程序。在项目的自定义配置中,可能需要根据项目需求进行路由配置、状态管理(如Vuex)、以及与后端API的集成等。 7. 压缩包子文件的使用场景 "argos-client-master"作为压缩包子文件的名称,表明该项目可能还涉及打包发布或模块化开发。在项目开发中,压缩包子文件通常用于快速分发和部署代码,或者是在模块化开发中作为依赖进行引用。使用压缩包子文件可以确保项目的依赖关系清晰,并且方便其他开发者快速安装和使用。 通过上述内容的阐述,我们可以了解到在进行"argos-client:客户端"项目的开发时,需要熟悉的一系列操作,包括项目设置、编译和热重装、生产环境编译、单元测试和端到端测试、代码风格检查和修复,以及与Vue框架相关的各种配置。同时,了解压缩包子文件在项目中的作用,能够帮助开发者高效地管理和部署代码。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【SecureCRT高亮规则深度解析】:让日志输出一目了然的秘诀

![【SecureCRT高亮规则深度解析】:让日志输出一目了然的秘诀](https://www.endace.com/assets/images/learn/packet-capture/Packet-Capture-diagram%203.png) 参考资源链接:[SecureCRT设置代码关键字高亮教程](https://wenku.csdn.net/doc/6412b5eabe7fbd1778d44db0?spm=1055.2635.3001.10343) # 1. SecureCRT高亮规则概述 ## 1.1 高亮规则的入门介绍 SecureCRT是一款流行的终端仿真程序,常被用来
recommend-type

在用友U8 UFO报表系统中,如何通过格式管理功能实现报表的格式与样式自定义?

格式管理功能是用友U8 UFO报表系统的一个核心特性,允许用户根据具体需求对报表的布局和样式进行个性化定制。具体操作步骤如下: 参考资源链接:[用友U8 UFO报表系统详解与操作指南](https://wenku.csdn.net/doc/11hy4cw3at?spm=1055.2569.3001.10343) 首先,打开用友U8 UFO报表系统,选择需要编辑的报表文件。 进入报表编辑界面后,点击界面上的‘格式’菜单,这里可以设置报表的各种格式参数。 在格式设置中,用户可以定义报表的字体、大小、颜色、