利用A*算法实现八数码难题(九宫重排)的搜索。
时间: 2023-07-20 21:08:11 浏览: 81
好的,以下是八数码难题的A*算法实现:
1. 定义状态(State):用一个二维数组表示八数码难题的状态,其中0表示空格。
2. 定义状态转移(Transition):对于任何一个状态,可以进行上下左右四个方向的操作,即将空格与上下左右四个方向的数字进行交换。
3. 定义估价函数(Heuristic):采用曼哈顿距离作为估价函数,即对于每一个数字,计算其当前位置到目标位置的曼哈顿距离,然后将所有数字的曼哈顿距离相加,得到当前状态到目标状态的估计代价。
4. 定义状态优先级(Priority):采用f(n) = g(n) + h(n)作为状态的优先级,其中g(n)表示从初始状态到当前状态的实际代价,h(n)表示当前状态到目标状态的估计代价。
5. 使用优先队列(Priority Queue)对状态进行搜索,每次从队列中取出优先级最高的状态,计算其所有可能的后继状态的优先级,并将这些状态加入队列中。
6. 搜索过程中记录每一个状态的父状态,以便在搜索完成后回溯路径。
7. 当搜索到目标状态时,回溯路径即可得到从初始状态到目标状态的最短路径。
下面是Python代码实现:
```python
import heapq
class State:
def __init__(self, board, moves, parent):
self.board = board
self.moves = moves
self.parent = parent
def __lt__(self, other):
return self.moves < other.moves
def __eq__(self, other):
return self.board == other.board
def generate_successors(state):
successors = []
zero_row, zero_col = get_zero_position(state.board)
for row, col in [(0, 1), (1, 0), (0, -1), (-1, 0)]:
new_row, new_col = zero_row + row, zero_col + col
if 0 <= new_row < 3 and 0 <= new_col < 3:
new_board = [row[:] for row in state.board]
new_board[zero_row][zero_col], new_board[new_row][new_col] = new_board[new_row][new_col], new_board[zero_row][zero_col]
successors.append(State(new_board, state.moves + 1, state))
return successors
def get_zero_position(board):
for i in range(3):
for j in range(3):
if board[i][j] == 0:
return i, j
def manhattan_distance(board):
distance = 0
for i in range(3):
for j in range(3):
if board[i][j] != 0:
row, col = divmod(board[i][j] - 1, 3)
distance += abs(row - i) + abs(col - j)
return distance
def a_star_search(initial_state):
heap = [initial_state]
visited = set([initial_state])
while heap:
state = heapq.heappop(heap)
if manhattan_distance(state.board) == 0:
return state
for successor in generate_successors(state):
if successor not in visited:
heapq.heappush(heap, successor)
visited.add(successor)
return None
def get_solution(state):
moves = []
while state.parent:
moves.append(state.board)
state = state.parent
moves.append(state.board)
return moves[::-1]
if __name__ == '__main__':
initial_board = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 0]
]
initial_state = State(initial_board, 0, None)
result = a_star_search(initial_state)
if result:
solution = get_solution(result)
for board in solution:
print(board)
print()
else:
print("No solution found.")
```
注意:由于Python的heapq模块是用最小堆实现的,而我们需要使用最大堆,因此在State类中定义了__lt__()方法,使它的优先级越高。
阅读全文