flink cdc代码
时间: 2023-09-03 11:05:43 浏览: 226
当使用Flink CDC(Change Data Capture)时,可以通过以下代码来实现:
1. 首先,需要添加Flink CDC的依赖包到你的项目中。可以在pom.xml文件中添加以下依赖项:
```xml
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.12</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-elasticsearch7_2.12</artifactId>
<version>${flink.version}</version>
</dependency>
```
请确保`${flink.version}`的值与你使用的Flink版本匹配。
2. 创建一个Flink Job来消费变更数据,并将其发送到Elasticsearch。
```java
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSink;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.KafkaDeserializationSchema;
import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;
import org.apache.flink.streaming.connectors.kafka.KafkaTopicPartition;
import org.apache.flink.streaming.connectors.kafka.internals.KafkaTopicPartitionAssigner;
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema;
import org.apache.flink.types.Row;
import java.util.*;
public class FlinkCDCJob {
public static void main(String[] args) throws Exception {
// 解析命令行参数
ParameterTool parameterTool = ParameterTool.fromArgs(args);
// 创建Flink执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 设置并行度
env.setParallelism(parameterTool.getInt("parallelism", 1));
// 设置重启策略
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(
parameterTool.getInt("restart-attempts", 3),
parameterTool.getLong("delay-between-attempts", 1000L)
));
// 创建Kafka消费者
Properties props = new Properties();
props.setProperty("bootstrap.servers", parameterTool.getRequired("bootstrap-servers"));
props.setProperty("group.id", parameterTool.getRequired("group-id"));
FlinkKafkaConsumer<Row> kafkaConsumer = new FlinkKafkaConsumer<>(
parameterTool.getRequired("topic"),
(KafkaDeserializationSchema<Row>) (record, timestamp) -> {
// 解析Kafka记录,将其转换为Flink的Row对象
// 这里需要根据你的数据格式进行相应的解析操作
// 返回的Row对象中包含了变更前后的数据信息
return null;
},
props
);
// 从指定的offset开始消费数据
if (parameterTool.has("from-offset")) {
String[] offsets = parameterTool.getRequired("from-offset").split(",");
Map<KafkaTopicPartition, Long> specificOffsets = new HashMap<>();
for (String offset : offsets) {
String[] parts = offset.split(":");
specificOffsets.put(new KafkaTopicPartition(parts[0], Integer.parseInt(parts[1])), Long.parseLong(parts[2]));
}
kafkaConsumer.setStartFromSpecificOffsets(specificOffsets);
}
// 创建Kafka消费数据流
DataStreamSource<Row> stream = env.addSource(kafkaConsumer);
// 将数据流发送到Elasticsearch
List<HttpHost> httpHosts = new ArrayList<>();
httpHosts.add(new HttpHost(parameterTool.getRequired("es-host"), parameterTool.getInt("es-port", 9200)));
ElasticsearchSink.Builder<Row> esSinkBuilder = new ElasticsearchSink.Builder<>(
httpHosts,
(KafkaSerializationSchema<Row>) (element, timestamp) -> {
// 将Flink的Row对象转换为要发送到Elasticsearch的数据格式
// 这里需要根据你的数据格式进行相应的转换操作
return null;
}
);
// 批量写入配置
esSinkBuilder.setBulkFlushMaxActions(parameterTool.getInt("bulk-flush-max-actions", 100));
stream.addSink(esSinkBuilder.build());
// 执行Flink Job
env.execute("Flink CDC Job");
}
}
```
请根据你的实际情况修改上述代码中的配置参数和数据转换逻辑。
这段代码使用Flink从Kafka消费变更数据,并将其发送到Elasticsearch。你需要根据你的数据格式和业务逻辑来实现`KafkaDeserializationSchema`和`KafkaSerializationSchema`接口中的方法。同时,你还需要配置Kafka和Elasticsearch的连接信息、消费组ID、并设置适当的并行度和重启策略等。
希望对你有帮助!
阅读全文