point wise Attention
时间: 2023-09-24 16:12:31 浏览: 114
Point-wise Attention是Triple Attention模块中的一部分,用于判断一个体素中哪些点更加重要。它通过学习三个多层感知机(MLP)来实现,类似于之前提到的点注意力。Point-wise Attention考虑了不同点之间的影响,并将其加入到特征表示中。在Triple Attention模块中,Point-wise Attention与Channel-wise Attention和Voxel-wise Attention一起工作,以增强目标的关键信息并抑制不稳定的点。通过联合考虑通道注意力、点注意力和体素注意力,并执行堆叠操作,Triple Attention模块可以获得多级特征注意力,从而得到对象的判别表示。\[1\]\[2\]\[3\]
#### 引用[.reference_title]
- *1* *2* [【3D 目标检测】TANet: Robust 3D Object Detection from Point Clouds with Triple Attention](https://blog.csdn.net/qq_36380978/article/details/120692096)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [[点云分割]-Multi-Path Region Mining For Weakly Supervised 3D Semantic Segmentation on Point Clouds](https://blog.csdn.net/alfred_torres/article/details/107700798)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文